📄 dlqr.m
字号:
function [k,s,e] = dlqr(a,b,q,r,nn)
%DLQR Linear quadratic regulator design for discrete-time systems.
% [K,S,E] = DLQR(A,B,Q,R) calculates the optimal feedback gain
% matrix K such that the feedback law u[n] = -Kx[n] minimizes the
% cost function
% J = Sum {x'Qx + u'Ru}
% subject to the constraint equation:
% x[n+1] = Ax[n] + Bu[n]
%
% Also returned is S, the steady-state solution to the associated
% discrete matrix Riccati equation and the closed loop eigenvalues
% E, -1
% 0 = S - A'SA + A'SB(R+B'SB) BS'A - Q E = EIG(A-B*K)
%
% [K.S,E] = DLQR(A,B,Q,R,N) includes the cross-term N that relates
% u to x in the cost function:
%
% J = Sum {x'Qx + u'Ru + 2*x'Nu}
%
% The controller can be formed with DREG.
%
% See also: DLQRY, LQRD, and DREG.
% J.N. Little 4-21-85
% Revised 6-23-86 JNL
% Revised 7-16-90 Clay M. Thompson
% Copyright (c) 1986-93 by the MathWorks, Inc.
error(nargchk(4,5,nargin));
error(abcdchk(a,b));
if ~length(a) | ~length(b)
error('A and B matrices cannot be empty.')
end
[m,n] = size(a);
[mb,nb] = size(b);
[mq,nq] = size(q);
if (m ~= mq) | (n ~= nq)
error('A and Q must be the same size');
end
[mr,nr] = size(r);
if (mr ~= nr) | (nb ~= mr)
error('B and R must be consistent');
end
if nargin==5
[mn,nnn] = size(nn);
if (mn ~= m) | (nnn ~= nr), error('N must be consistent with Q and R'); end
% Add cross term
q = q - nn/r*nn';
a = a - b/r*nn';
else
nn = zeros(m,nb);
end
% Check if q is positive semi-definite and symmetric
nq = norm(q,1);
if any(eig(q) < -eps*nq) | (norm(q'-q,1)/nq > eps)
disp('Warning: Q is not symmetric and positive semi-definite');
end
% Check if r is positive definite and symmetric
nr = norm(r,1);
if any(eig(r) <= -eps*nr) | (norm(r'-r,1)/nr > eps)
disp('Warning: R is not symmetric and positive definite');
end
% eigenvectors of Hamiltonian
[v,d] = eig([a+b/r*b'/a'*q -b/r*b'/a'; -a'\q inv(a)']);
d = diag(d);
[e,index] = sort(abs(d)); % sort on magnitude of eigenvalues
if (~((e(n) < 1) & (e(n+1)>1)))
error('Can''t order eigenvalues, (A,B) may be uncontrollable.');
else
e = d(index(1:n));
end
% select vectors with eigenvalues inside unit circle
chi = v(1:n,index(1:n));
lambda = v((n+1):(2*n),index(1:n));
s = real(lambda/chi);
k = (r+b'*s*b)\b'*s*a + r\nn';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -