⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mfbox_pre_denoise_run.m

📁 toolbox for spm 5 for data, model free analysis
💻 M
字号:
function [X,mask,grid,timeline,params,private]=mfbox_pre_denoise_run(X,mask,grid,timeline,params,runflag,private)% denoise data%% Usage:%  [X,mask,grid,timeline,params,private]=mfbox_pre_denoise_run(X,mask,grid,timeline,params,runflag,private)%%  X        - (NxT) data%             or struct for mfbox_databackend('getdata',X,i),[],1);%  mask     - data mask (XxYxZ) with sum(mask(:))==N%  grid     - 3d positions (3xN) of the data values%  timeline - timeline (1xT)%  params   - struct with%             priority - evaluation priority%             delaydim - delaydim%             clusters - clusters%             steps    - steps%  runflag  - -1 get default parameter%              0 interactive ask parameters%              1 interactive ask parameters and run%              2 run%  private  - private data to enable plot updates while selecting (see also mfbox_databackend)%% Copyright by Peter Gruber and Fabian J. Theis% Signal Processing & Information Theory group% Institute of Biophysics, University of Regensburg, Germany% Homepage: http://research.fabian.theis.name%           http://www-aglang.uni-regensburg.de%% This file is free software, subject to the % GNU GENERAL PUBLIC LICENSE, see gpl.txterror(nargchk(1,7,nargin));error(nargchk(1,6,nargout));if (isstruct(X)), s = [X.dim,X.timesteps];else, s = size(X);enddim = s(1:(end-1));if (length(dim)<2), dim = [1,dim]; endn = s(end);if (nargin<2), mask = true(dim); enddim = size(mask);if (length(dim)==length(s)), n = 1; endif (nargin<3), grid = mfbox_mkgrid(dim)'; endif (nargin<4), timeline = 0:(n-1); endif (nargin<5), params = []; endif (nargin<6), runflag = 1; endif (nargin<7), private = []; endparams = mfbox_checkparam(params,'pre','denoise', ...    struct('priority',50,'delaydim',3,'clusters',10,'steps',2));if (abs(runflag-0.5)<1)    if (exist('OCTAVE_HOME')~=5)% matlab        [params,private] = mfbox_pre_denoiseg(X,mask,grid,timeline,params,runflag,private);    elseif (exist('OCTAVE_HOME')==5) %octave        [params,runflag] = mfbox_getparam(params,runflag,'mfbox_pre_denoiseg.py');    endendif (runflag>0 && isstruct(params))    if (runflag<3)        prgs = mfbox_progress([],'title','Denoise','string','Denoising Data...', ...            'progress',[1,n+1]); drawnow;    end    if (isstruct(X))        rmask = false(size(mask));        ndim = zeros(1,ndims(mask));        for i=1:length(ndim)            t = mask;            for j=1:length(ndim), if (j~=i), t = max(t,[],j); end; end            ref{i} = t(:)>0;            ndim(i) = sum(ref{i});        end        subsasgn(rmask,struct('type','()','subs',{ref}),true);        oX = X;        X = zeros(sum(mask(:)),n,'single');        grid=grid(:,mask);        for i=1:n            v = reshape(mfbox_databackend('getdata',oX,i),[],1);            v = reshape(single(mfbox_denoise(reshape(v(rmask),ndim), ...                params.delaydim,params.clusters, ...                params.steps,'kmeans','pca','avg','var','mdl',32,1)),[],1);            X(:,i) = v(mask(rmask));            if (runflag<3)                mfbox_progress(prgs,'string','Denoising Data...','progress', ...                    [i+1,n+1]);            end        end    else        X = reshape(X,[],n);        for i=1:n            X(:,i) = reshape(single(mfbox_denoise({double(X(:,i)),grid}, ...                params.delaydim,params.clusters,params.steps, ...                'kmeans','pca','avg','var','mdl',32,1)),[],1);            if (runflag<3)                mfbox_progress(prgs,'string','Denoising Data...','progress',[i+1,n+1]);            end        end    end    if (runflag<3), mfbox_progress(prgs,'close',[]); endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -