📄 mfbox_fastica.m
字号:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Subfunction% Calculates tanh simplier and faster than Matlab tanh.function y=tanh(x)y = 1 - 2 ./ (exp(2 * x) + 1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function Samples = getSamples(max, percentage)Samples = find(rand(1, max) < percentage);function [newVectors, whiteningMatrix, dewhiteningMatrix] = whitenv ... (vectors, E, D, s_verbose);%WHITENV - Whitenv vectors.%% [newVectors, whiteningMatrix, dewhiteningMatrix] = ...% whitenv(vectors, E, D, verbose);%% Whitens the data (row vectors) and reduces dimension. Returns% the whitened vectors (row vectors), whitening and dewhitening matrices.%% ARGUMENTS%% vectors Data in row vectors.% E Eigenvector matrix from function 'pcamat'% D Diagonal eigenvalue matrix from function 'pcamat'% verbose Optional. Default is 'on'%% EXAMPLE% [E, D] = pcamat(vectors);% [nv, wm, dwm] = whitenv(vectors, E, D);%%% This function is needed by FASTICA and FASTICAG%% See also PCAMAT% @(#)$Id: whitenv.m,v 1.3 2003/10/12 09:04:43 jarmo Exp $% ========================================================% Default value for 'verbose'if nargin < 4, s_verbose = 'on'; end% Check the optional parameter verbose;switch lower(s_verbose) case 'on' b_verbose = 1; case 'off' b_verbose = 0; otherwise error(sprintf('Illegal value [ %s ] for parameter: ''verbose''\n', s_verbose));end% ========================================================% In some cases, rounding errors in Matlab cause negative% eigenvalues (elements in the diagonal of D). Since it% is difficult to know when this happens, it is difficult% to correct it automatically. Therefore an error is % signalled and the correction is left to the user.if any (diag (D) < 0), error (sprintf (['[ %d ] negative eigenvalues computed from the' ... ' covariance matrix.\nThese are due to rounding' ... ' errors in Matlab (the correct eigenvalues are\n' ... 'probably very small).\nTo correct the situation,' ... ' please reduce the number of dimensions in the' ... ' data\nby using the ''lastEig'' argument in' ... ' function FASTICA, or ''Reduce dim.'' button\nin' ... ' the graphical user interface.'], ... sum (diag (D) < 0)));end% ========================================================% Calculate the whitening and dewhitening matrices (these handle% dimensionality simultaneously).whiteningMatrix = inv (sqrt (D)) * E';dewhiteningMatrix = E * sqrt (D);% Project to the eigenvectors of the covariance matrix.% Whiten the samples and reduce dimension simultaneously.if b_verbose, fprintf ('Whitening...\n'); endnewVectors = whiteningMatrix * vectors;% ========================================================% Just some security...if ~isreal(newVectors) error ('Whitened vectors have imaginary values.');end% Print some information to userif b_verbose fprintf ('Check: covariance differs from identity by [ %g ].\n', ... max (max (abs (cov (newVectors', 1) - eye (size (newVectors, 1))))));endfunction [E, D] = pcamat(vectors, firstEig, lastEig, s_interactive, ... s_verbose);%PCAMAT - Calculates the pca for data%% [E, D] = pcamat(vectors, firstEig, lastEig, ... % interactive, verbose);%% Calculates the PCA matrices for given data (row) vectors. Returns% the eigenvector (E) and diagonal eigenvalue (D) matrices containing the% selected subspaces. Dimensionality reduction is controlled with% the parameters 'firstEig' and 'lastEig' - but it can also be done% interactively by setting parameter 'interactive' to 'on' or 'gui'.%% ARGUMENTS%% vectors Data in row vectors.% firstEig Index of the largest eigenvalue to keep.% Default is 1.% lastEig Index of the smallest eigenvalue to keep.% Default is equal to dimension of vectors.% interactive Specify eigenvalues to keep interactively. Note that if% you set 'interactive' to 'on' or 'gui' then the values% for 'firstEig' and 'lastEig' will be ignored, but they% still have to be entered. If the value is 'gui' then the% same graphical user interface as in FASTICAG will be% used. Default is 'off'.% verbose Default is 'on'.%%% EXAMPLE% [E, D] = pcamat(vectors);%% Note % The eigenvalues and eigenvectors returned by PCAMAT are not sorted.%% This function is needed by FASTICA and FASTICAG% For historical reasons this version does not sort the eigenvalues or% the eigen vectors in any ways. Therefore neither does the FASTICA or% FASTICAG. Generally it seams that the components returned from% whitening is almost in reversed order. (That means, they usually are,% but sometime they are not - depends on the EIG-command of matlab.)% @(#)$Id: pcamat.m,v 1.5 2003/12/15 18:24:32 jarmo Exp $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Default values:if nargin < 5, s_verbose = 'on'; endif nargin < 4, s_interactive = 'off'; endif nargin < 3, lastEig = size(vectors, 1); endif nargin < 2, firstEig = 1; end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Check the optional parameters;switch lower(s_verbose) case 'on' b_verbose = 1; case 'off' b_verbose = 0; otherwise error(sprintf('Illegal value [ %s ] for parameter: ''verbose''\n', s_verbose));endswitch lower(s_interactive) case 'on' b_interactive = 1; case 'off' b_interactive = 0; case 'gui' b_interactive = 2; otherwise error(sprintf('Illegal value [ %s ] for parameter: ''interactive''\n', ... s_interactive));endoldDimension = size (vectors, 1);if ~(b_interactive) if lastEig < 1 | lastEig > oldDimension error(sprintf('Illegal value [ %d ] for parameter: ''lastEig''\n', lastEig)); end if firstEig < 1 | firstEig > lastEig error(sprintf('Illegal value [ %d ] for parameter: ''firstEig''\n', firstEig)); endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Calculate PCA% Calculate the covariance matrix.if b_verbose, fprintf ('Calculating covariance...\n'); endcovarianceMatrix = cov(vectors', 1);% Calculate the eigenvalues and eigenvectors of covariance% matrix.[E, D] = eig (covarianceMatrix);% The rank is determined from the eigenvalues - and not directly by% using the function rank - because function rank uses svd, which% in some cases gives a higher dimensionality than what can be used% with eig later on (eig then gives negative eigenvalues).rankTolerance = 1e-7;maxLastEig = sum (diag (D) > rankTolerance);if maxLastEig == 0, fprintf (['Eigenvalues of the covariance matrix are' ... ' all smaller than tolerance [ %g ].\n' ... 'Please make sure that your data matrix contains' ... ' nonzero values.\nIf the values are very small,' ... ' try rescaling the data matrix.\n'], rankTolerance); error ('Unable to continue, aborting.');end% Sort the eigenvalues - decending.eigenvalues = flipud(sort(diag(D)));%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Interactive part - command-lineif b_interactive == 1 % Show the eigenvalues to the user hndl_win=figure; bar(eigenvalues); title('Eigenvalues'); % ask the range from the user... % ... and keep on asking until the range is valid :-) areValuesOK=0; while areValuesOK == 0 firstEig = input('The index of the largest eigenvalue to keep? (1) '); lastEig = input(['The index of the smallest eigenvalue to keep? (' ... int2str(oldDimension) ') ']); % Check the new values... % if they are empty then use default values if isempty(firstEig), firstEig = 1;end if isempty(lastEig), lastEig = oldDimension;end % Check that the entered values are within the range areValuesOK = 1; if lastEig < 1 | lastEig > oldDimension fprintf('Illegal number for the last eigenvalue.\n'); areValuesOK = 0; end if firstEig < 1 | firstEig > lastEig fprintf('Illegal number for the first eigenvalue.\n'); areValuesOK = 0; end end % close the window close(hndl_win);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Interactive part - GUIif b_interactive == 2 % Show the eigenvalues to the user hndl_win = figure('Color',[0.8 0.8 0.8], ... 'PaperType','a4letter', ... 'Units', 'normalized', ... 'Name', 'FastICA: Reduce dimension', ... 'NumberTitle','off', ... 'Tag', 'f_eig'); h_frame = uicontrol('Parent', hndl_win, ... 'BackgroundColor',[0.701961 0.701961 0.701961], ... 'Units', 'normalized', ... 'Position',[0.13 0.05 0.775 0.17], ... 'Style','frame', ... 'Tag','f_frame');b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'BackgroundColor',[0.701961 0.701961 0.701961], ... 'HorizontalAlignment','left', ... 'Position',[0.142415 0.0949436 0.712077 0.108507], ... 'String','Give the indices of the largest and smallest eigenvalues of the covariance matrix to be included in the reduced data.', ... 'Style','text', ... 'Tag','StaticText1');e_first = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'Callback',[ ... 'f=round(str2num(get(gcbo, ''String'')));' ... 'if (f < 1), f=1; end;' ... 'l=str2num(get(findobj(''Tag'',''e_last''), ''String''));' ... 'if (f > l), f=l; end;' ... 'set(gcbo, ''String'', int2str(f));' ... ], ... 'BackgroundColor',[1 1 1], ... 'HorizontalAlignment','right', ... 'Position',[0.284831 0.0678168 0.12207 0.0542535], ... 'Style','edit', ... 'String', '1', ... 'Tag','e_first');b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'BackgroundColor',[0.701961 0.701961 0.701961], ... 'HorizontalAlignment','left', ... 'Position',[0.142415 0.0678168 0.12207 0.0542535], ... 'String','Range from', ... 'Style','text', ... 'Tag','StaticText2');e_last = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'Callback',[ ... 'l=round(str2num(get(gcbo, ''String'')));' ... 'lmax = get(gcbo, ''UserData'');' ... 'if (l > lmax), l=lmax; fprintf([''The selected value was too large, or the selected eigenvalues were close to zero\n'']); end;' ... 'f=str2num(get(findobj(''Tag'',''e_first''), ''String''));' ... 'if (l < f), l=f; end;' ... 'set(gcbo, ''String'', int2str(l));' ... ], ... 'BackgroundColor',[1 1 1], ... 'HorizontalAlignment','right', ... 'Position',[0.467936 0.0678168 0.12207 0.0542535], ... 'Style','edit', ... 'String', int2str(maxLastEig), ... 'UserData', maxLastEig, ... 'Tag','e_last');% in the first version oldDimension was used instead of % maxLastEig, but since the program would automatically% drop the eigenvalues afte maxLastEig...b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'BackgroundColor',[0.701961 0.701961 0.701961], ... 'HorizontalAlignment','left', ... 'Position',[0.427246 0.0678168 0.0406901 0.0542535], ... 'String','to', ... 'Style','text', ... 'Tag','StaticText3');b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'Callback','uiresume(gcbf)', ... 'Position',[0.630697 0.0678168 0.12207 0.0542535], ... 'String','OK', ... 'Tag','Pushbutton1');b = uicontrol('Parent',hndl_win, ... 'Units','normalized', ... 'Callback',[ ... 'gui_help(''pcamat'');' ... ], ... 'Position',[0.767008 0.0678168 0.12207 0.0542535], ... 'String','Help', ... 'Tag','Pushbutton2'); h_axes = axes('Position' ,[0.13 0.3 0.775 0.6]); set(hndl_win, 'currentaxes',h_axes); bar(eigenvalues); title('Eigenvalues'); uiwait(hndl_win); firstEig = str2num(get(e_first, 'String')); lastEig = str2num(get(e_last, 'String')); % close the window close(hndl_win);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% See if the user has reduced the dimension enoughtif lastEig > maxLastEig lastEig = maxLastEig; if b_verbose fprintf('Dimension reduced to %d due to the singularity of covariance matrix\n',... lastEig-firstEig+1); endelse % Reduce the dimensionality of the problem. if b_verbose if oldDimension == (lastEig - firstEig + 1) fprintf ('Dimension not reduced.\n'); else fprintf ('Reducing dimension...\n'); end endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drop the smaller eigenvaluesif lastEig < oldDimension lowerLimitValue = (eigenvalues(lastEig) + eigenvalues(lastEig + 1)) / 2;else lowerLimitValue = eigenvalues(oldDimension) - 1;endlowerColumns = diag(D) > lowerLimitValue;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drop the larger eigenvaluesif firstEig > 1 higherLimitValue = (eigenvalues(firstEig - 1) + eigenvalues(firstEig)) / 2;else higherLimitValue = eigenvalues(1) + 1;endhigherColumns = diag(D) < higherLimitValue;% Combine the results from aboveselectedColumns = lowerColumns & higherColumns;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% print some info for the userif b_verbose fprintf ('Selected [ %d ] dimensions.\n', sum (selectedColumns));endif sum (selectedColumns) ~= (lastEig - firstEig + 1), error ('Selected a wrong number of dimensions.');endif b_verbose fprintf ('Smallest remaining (non-zero) eigenvalue [ %g ]\n', eigenvalues(lastEig)); fprintf ('Largest remaining (non-zero) eigenvalue [ %g ]\n', eigenvalues(firstEig)); fprintf ('Sum of removed eigenvalues [ %g ]\n', sum(diag(D) .* ... (~selectedColumns)));end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Select the colums which correspond to the desired range% of eigenvalues.E = selcol(E, selectedColumns);D = selcol(selcol(D, selectedColumns)', selectedColumns);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Some more informationif b_verbose sumAll=sum(eigenvalues); sumUsed=sum(diag(D)); retained = (sumUsed / sumAll) * 100; fprintf('[ %g ] %% of (non-zero) eigenvalues retained.\n', retained);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function newMatrix = selcol(oldMatrix, maskVector);% newMatrix = selcol(oldMatrix, maskVector);%% Selects the columns of the matrix that marked by one in the given vector.% The maskVector is a column vector.% 15.3.1998if size(maskVector, 1) ~= size(oldMatrix, 2), error ('The mask vector and matrix are of uncompatible size.');endnumTaken = 0;for i = 1 : size (maskVector, 1), if maskVector(i, 1) == 1, takingMask(1, numTaken + 1) = i; numTaken = numTaken + 1; endendnewMatrix = oldMatrix(:, takingMask);function [newVectors, meanValue] = remmean(vectors);%REMMEAN - remove the mean from vectors%% [newVectors, meanValue] = remmean(vectors);%% Removes the mean of row vectors.% Returns the new vectors and the mean.%% This function is needed by FASTICA and FASTICAG% @(#)$Id: remmean.m,v 1.2 2003/04/05 14:23:58 jarmo Exp $newVectors = zeros (size (vectors));meanValue = mean (vectors')';newVectors = vectors - meanValue * ones (1,size (vectors, 2));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -