📄 mfbox_pre_remmean_run.m
字号:
function [X,mask,grid,timeline,params,private]=mfbox_pre_remmean_run(X,mask,grid,timeline,params,runflag,private)% remove means%% Usage:% [X,mask,grid,timeline,params,private]=mfbox_pre_remmean_run(X,mask,grid,timeline,params,runflag,private)%% X - (NxT) data% or struct for mfbox_databackend('getdata',X,i),[],1);% mask - data mask (XxYxZ) with sum(mask(:))==N% grid - 3d positions (3xN) of the data values% timeline - timeline (1xT)% params - struct with% priority - evaluation priority% meanm - temporal, spatial mean removal% spatial, temporal mean removal% spatial bg rescale, temporal mean removal% spatial mean removal% temporal mean remova% runflag - -1 get default parameter% 0 interactive ask parameters% 1 interactive ask parameters and run% 2 run% private - private data to enable plot updates while selecting (see also mfbox_databackend)%% Copyright by Peter Gruber and Fabian J. Theis% Signal Processing & Information Theory group% Institute of Biophysics, University of Regensburg, Germany% Homepage: http://research.fabian.theis.name% http://www-aglang.uni-regensburg.de%% This file is free software, subject to the % GNU GENERAL PUBLIC LICENSE, see gpl.txterror(nargchk(1,7,nargin));error(nargchk(1,6,nargout));if (isstruct(X)), s = [X.dim,X.timesteps];else, s = size(X);enddim = s(1:(end-1));if (length(dim)<2), dim = [1,dim]; endn = s(end);if (nargin<2), mask = true(dim); enddim = size(mask);if (length(dim)==length(s)), n = 1; endif (nargin<3) | isempty(grid) , grid = mfbox_mkgrid(dim)'; endif (nargin<4), timeline = 0:(n-1); endif (nargin<5), params = []; endif (nargin<6), runflag = 1; endif (nargin<7), private = []; endmeanms = { 'temporal, spatial mean removal' ... 'spatial bg rescale, temporal mean removal' ... 'spatial mean removal' ... 'temporal mean removal'};params = mfbox_checkparam(params,'pre','remmean', ... struct('meanm',meanms{1},'priority',60));if (abs(runflag-0.5)<1) if (exist('OCTAVE_HOME')~=5)% matlab [params,private] = mfbox_pre_remmeang(X,mask,grid,timeline,params,runflag,private); elseif (exist('OCTAVE_HOME')==5) %octave [params,runflag] = mfbox_getparam(params,runflag,'mfbox_pre_remmeang.py'); endendif (runflag>0 && isstruct(params)) if (isstruct(X)) oX = X; X = zeros(sum(mask(:)),n,'single'); for i=1:n v = single(reshape(mfbox_databackend('getdata',oX,i),[],1)); X(:,i) = v(mask); end grid = grid(:,mask); else sgr = size(grid); sm = size(mask); g = mat2cell(min(repmat(sm',1,sgr(2)), ... max(ones(sgr),round(grid))), ... ones(1,sgr(1)),sgr(2)); nmask = mask(sub2ind(sm,g{:})); X = reshape(X,[],n); if (any(nmask==0)) X = X(nmask,:); grid = grid(:,nmask); end end switch params.meanm case 'temporal, spatial mean removal' Xm = mean(X,2); for i=1:size(X,1), X(i,:) = X(i,:)-Xm(i); end Xm = mean(X,1); for i=1:size(X,2), X(:,i) = X(:,i)-Xm(i); end case 'spatial, temporal mean removal' Xm = mean(X,1); for i=1:size(X,2), X(:,i) = X(:,i)-Xm(i); end Xm = mean(X,2); for i=1:size(X,1), X(i,:) = X(i,:)-Xm(i); end case 'spatial bg rescale, temporal mean removal' v = mean(X,2); v(v.^2>eps) = 1./v(v.^2>eps); for i=1:size(X,1) X(i,:) = X(i,:)*v(i); end X = X.*repmat(v,1,n); Xm = mean(X,1); for i=1:size(X,2), X(:,i) = X(:,i)-Xm(i); end Xm = mean(X,2); for i=1:size(X,1), X(i,:) = X(i,:)-Xm(i); end case 'spatial mean removal' Xm = mean(X,1); for i=1:size(X,2), X(:,i) = X(:,i)-Xm(i); end case 'temporal mean removal' Xm = mean(X,2); for i=1:size(X,1), X(i,:) = X(i,:)-Xm(i); end endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -