📄 mfbox_rel_pkmeans_run.m
字号:
function [mfbss,params]=mfbox_rel_pkmeans_run(mfbss,params,runflag)% run bss algorithm with pkmeans clustering to access reliability%% Usage:% [mfbss,params]=mfbox_rel_pkmeans_run(mfbss,params,runflag)%% mfbss - mfbss structure (see mfbox_init)% name - bss algorithms% params - struct with% threshold_type - threshold components by% threshold - threshold value% iterations - number of repetitions% fraction - fraction of the data to use in cluster% steps% runflag - -1 get default parameter% 0 interactive ask parameters% 1 interactive ask parameters and run% 2 run%% Copyright by Peter Gruber, Ingo R. Keck and Fabian J. Theis% Signal Processing & Information Theory group% Institute of Biophysics, University of Regensburg, Germany% Homepage: http://research.fabian.theis.name% http://www-aglang.uni-regensburg.de%% This file is free software, subject to the % GNU GENERAL PUBLIC LICENSE, see gpl.txterror(nargchk(1,3,nargin));error(nargchk(1,2,nargout));if (nargin<2), params = []; endif (nargin<3), runflag = 1; endparams = mfbox_checkparam(params,'rel','pkmeans', ... struct('iterations',10,'fraction',0.5,'threshold',0.01, ... 'threshold_type','none'));if (abs(runflag-0.5)<1) params = mfbox_rel_pkmeansg(mfbss,params,runflag);endif (runflag>0 && isstruct(params)) if (runflag<3) prgs = mfbox_progress([],'title','pk-means analysis','string',sprintf('Running pkmeans\nreliability analysis...'), ... 'progress',[1,3*params.iterations]); end [tg,mask,smask,xmask] = mfbox_getmask(mfbss.grid,mfbss.mask); if (~isempty(mfbss.reference)), reference = mfbss.reference(mask); else reference = []; end cmd_func = str2func(sprintf('mfbox_%s_run',mfbss.name)); rparams = mfbss.params.(mfbss.name); if (isempty(smask)) [f,A,W,S] = cmd_func(mfbss.X,mask,rparams,max(2,runflag)); else tX = mfbox_getmaskdata(mfbss.X,tg,mask); [f,A,W,S] = cmd_func(tX,mask,rparams,max(2,runflag)); end vAp = mfbox_calcthreshold(A,S,params.threshold_type,params.threshold, ... mfbss.design,reference); mfbss.A = A(:,vAp); mfbss.W = W(vAp,:); mfbss.S = single(S(:,vAp)); mfbss.reliability = struct(); if (params.iterations>0) sa = size(mfbss.A); if (params.fraction<0.9) transA = mfbss.A*(mfbss.A'*mfbss.A)^(-0.5); As = zeros([sa(2),sa(2),params.iterations+1],'single'); As(:,:,1) = transA'*mfbss.A; transS = mfbss.S*(mfbss.S'*mfbss.S)^(-0.5); Ss = zeros([sa(2),sa(2),params.iterations+1],'single'); Ss(:,:,1) = transS'*mfbss.S; else As = zeros([size(mfbss.A),params.iterations+1],'single'); As(:,:,1) = mfbss.A; end pms = length(xmask); for i=1:params.iterations if (runflag<3) mfbox_progress(prgs,'string',sprintf('Running pkmeans\nreliability analysis...'), ... 'progress',params.iterations*[1,3]+[i,0]); end if (params.fraction==1) if (isempty(smask)) [f,tA,tW,tS] = cmd_func(mfbss.X,mask,rparams,max(2,runflag)); else tX = mfbox_getmaskdata(mfbss.X,tg,mask); [f,tA,tW,tS] = cmd_func(tX,mask,rparams,max(2,runflag)); end vAp = mfbox_calcthreshold(tA,tS,params.threshold_type,params.threshold, ... mfbss.design,reference); tA = tA(:,vAp); tS = tS(:,vAp); As(:,:,i+1) = single(tA); elseif (params.fraction<0.9) r = (rand(1,pms)<params.fraction); M = mask; M(M) = r; if (~isempty(reference)), ref = reference(r); else ref = []; end if (isempty(smask)) [f,tA,tW,tS] = cmd_func(mfbss.X(r,:),M,rparams,max(2,runflag)); else tX = mfbox_getmaskdata(mfbss.X,tg,mask); [f,tA,tW,tS] = cmd_func(tX(r,:),M,rparams,max(2,runflag)); end vAp = mfbox_calcthreshold(tA,tS,params.threshold_type,params.threshold, ... mfbss.design,ref); tA = tA(:,vAp); tS = tS(:,vAp); As(:,:,i+1) = single(transA'*tA); Ss(:,:,i+1) = single(transS(r,:)'*tS); else r = (rand(1,pms)<params.fraction); M = mask; M(M) = r; if (~isempty(reference)), ref = reference(r); else ref = []; end tX = []; if (isempty(smask)) [f,tA,tW,tS] = cmd_func(mfbss.X(r,:),M,rparams,max(2,runflag)); else tX = mfbox_getmaskdata(mfbss.X,tg,mask); [f,tA,tW,tS] = cmd_func(tX(r,:),M,rparams,max(2,runflag)); end vAp = mfbox_calcthreshold(tA,tS,params.threshold_type,params.threshold, ... mfbss.design,ref); tA = tA(:,vAp); As(:,:,i+1) = single(tA); end clear tA tW tS end if (params.fraction<0.9) if (runflag<3) mfbox_progress(prgs,'string', ... sprintf('Running pkmeans\nreliability analysis...'), ... 'progress',params.iterations*[2,3]); end [A,CE,CN,CL] = pkcluster(reshape(double(As),sa(2),[]),sa(2)); mfbss.reliability.temporalpkerr = double(CE(CL(1,:))'); mfbss.reliability.temporalpknum = CN(CL(1,:))'; if (runflag<3) mfbox_progress(prgs,'string',sprintf('Running pkmeans\nreliability analysis...'), ... 'progress',params.iterations*[3,3]); end [A,CE,CN,CL] = pkcluster(reshape(double(Ss),sa(2),[]),sa(2)); mfbss.reliability.spatialpkerr= double(CE(CL(1,:))'); mfbss.reliability.spatialpknum = CN(CL(1,:))'; else As = reshape(As,sa(1),[]); [e,d] = eig(cov(As')); d = diag(d); [d,x] = sort(d,'descend'); transA = e(:,x(1:sa(2))); %TODO more reduction [A,CE,CN,CL] = pkcluster(transA'*As,sa(2)); mfbss.A = transA*A; mfbss.W = pinv(mfbss.A); if (all(xmask(:))) mfbss.S = mfbss.X*mfbss.W'; else mfbss.S = mfbss.X(xmask,:)*mfbss.W'; end mfbss.reliability.pkerr = double(CE(:)'); mfbss.reliability.pknum = double(CN(:)'); end end if (runflag<3) mfbox_progress(prgs,'string',sprintf('Running pkmeans\nreliability analysis...'), ... 'progress',params.iterations*[3,3]); end s = size(mfbss.A); if (s(1)>=8) M = zeros(s(2)); for i=ceil(s(1)/20):ceil(s(1)/20):floor(s(1)/4) preA = mfbss.A(1:(end-i),:)-repmat(mean(mfbss.A(1:(end-i),:)),s(1)-i,1); posA = mfbss.A((1+i):end,:)-repmat(mean(mfbss.A((1+i):end,:)),s(1)-i,1); C = abs(diag(1./std(preA))*preA'*posA*diag(1./std(posA)))/(s(1)-i); rM = max(real(M),C); iM = imag(M); iM(C>=real(M)) = i; M = complex(rM,iM); end mfbss.extraplot = {@mfbox_plotnetworkwin,M}; end m = repmat(1:size(mfbss.A,2),size(mfbss.A,1),1); v = 1./std(mfbss.S); mfbss.A = mfbss.A./(v(m)); mfbss.W = mfbss.W.*(v(m))'; mfbss.S = struct('mask',xmask,'map',m,'dat',mfbss.S*diag(v)); varargout{1} = mfbss; if (runflag<3), mfbox_progress(prgs,'close',[]); endendreturnfunction [CC,CE,CN,CL]=pkcluster(A,l)CQ = Inf;for i=1:10 % bad hack? in our test clustering worked the first time [cc,cl,cq,ce] = mfbox_pkmeans('batch',A',l); if (cq<CQ), CL = cl; CE = ce; CC = cc'; break; endendCE = accumarray(CL(:),CE(:),[l,1],@mean);CN = accumarray(CL(:),1,[l,1]);%CE = 1-CE;CE = 1-(CE/max(CE(:)));CE(CN==0) = 0;CN = CN/max(CN(:));%CN = CN / l; %so CN(i)*100% gives the percentage of component found in l runsCL = reshape(CL,[],l);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -