📄 mie_rain1d.m
字号:
function result = Mie_rain1d(fGHz, TK, nsteps, dD)
% Efficiencies differences of rain extinction, scattering, absorption
% backscattering and asymmetric scattering, using Mie Theory
% between the dielectric water models of Liebe 1991 and Liebe 1993
% Input: fGHz frequency in GHz, TK temperature in K, nsteps number
% of diameters (D in mm), dD increament of diameter in mm
% C. M鋞zler, June 2002
m=sqrt(epswater(fGHz, TK))
m93=sqrt(epswater93(fGHz, TK))
dm1=real(m-m93);dm2=imag(m-m93);
nx=(1:nsteps)';
D=(nx-1)*dD;
c0=299.793;
x=pi*D*fGHz/c0;
for j = 1:nsteps
a(j,:)=Mie(m,x(j));
a93(j,:)=Mie(m93,x(j));
da=(a-a93);
end;
% plotting the results
plot(D,da(:,1:5))
legend('dQext','dQsca','dQabs','dQb','d<costeta>')
title(sprintf('f=%gGHz, T=%gK, m91-m93 = %g+%gi',fGHz,TK,dm1,dm2))
xlabel('D (mm)')
ylabel('Mie Eficiency Differences Liebe91-Liebe93')
result.a=a; result.a93=a93;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -