📄 besselplot3.m
字号:
function result = besselplot3(n, m, xmin, dx, nx)
% Computation and plot of Inverse Products of Riccati-Bessel Functions
% of Order n for complex argument z=m*x, used in Mie Theory,
% input: order n, refractive index m, minimum x value xmin,
% x interval dx, number of x values nx.
% C. M鋞zler, August 2002
m1=real(m);m2=imag(m);
nn=(1:nx);
x=xmin+dx*nn;
nu=n+0.5;
z=m.*x;
sqz= sqrt(0.5*pi*z);
pz = besselj(nu, z).*sqz; % Psi_n Function
chz = -bessely(nu, z).*sqz; % Chi_n Function
p1z= besselj(nu-1, z).*sqz; % Psi_n-1 Function
ch1z= -bessely(nu-1, z).*sqz;; % Chi_n-1 Function
pc=1./(pz.*chz);
dz1=real(pc);
dz2=imag(pc);
r=[dz1;dz2];
plot(x,r(1:2,:))
legend('real(1/(Psi_n(mx)*Chi_n(mx)))','imag(1/(Psi_n(mx)*Chi_n(mx)))')
title(sprintf('Inverse product of Riccati-Bessel Functions of Order n=%g, for m=%g+%gi',n,m1,m2))
xlabel('x')
result=[x;r];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -