📄 mie2.m
字号:
function result = Mie2(eps1, mu1, x)
% Computation of Mie Efficiencies for given complex
% permittivity and permeability ratios eps1=eps1'+ieps1",
% mu1=mu1'+imu1" between inside and outside of the sphere
% and size parameter x=k0*a, where k0= wave number in ambient
% medium, a=sphere radius, using complex Mie Coefficients
% an and bn for n=1 to nmax,.
% Bohren and Huffman (1983) BEWI:TDD122, p. 103,119-122,477.
% Result: Efficiencies for extinction (qext),
% scattering (qsca), absorption (qabs), backscattering (qb),
% asymmetry parameter (asy=<costeta>) and (qratio=qb/qsca).
% C. M鋞zler, July 2002.
if x==0 % To avoid a singularity at x=0
result=[0 0 0 0 0 1.5];
elseif x>0 % This is the normal situation
nmax=round(2+x+4*x.^(1/3));
n1=nmax-1;
n=(1:nmax);cn=2*n+1; c1n=n.*(n+2)./(n+1); c2n=cn./n./(n+1);
x2=x.*x;
f=mie2_ab(eps1,mu1,x);
anp=(real(f(1,:))); anpp=(imag(f(1,:)));
bnp=(real(f(2,:))); bnpp=(imag(f(2,:)));
g1(1:4,nmax)=[0; 0; 0; 0]; % displaced numbers used for
g1(1,1:n1)=anp(2:nmax); % asymmetry parameter, p. 120
g1(2,1:n1)=anpp(2:nmax);
g1(3,1:n1)=bnp(2:nmax);
g1(4,1:n1)=bnpp(2:nmax);
dn=cn.*(anp+bnp);
q=sum(dn);
qext=2*q/x2;
en=cn.*(anp.*anp+anpp.*anpp+bnp.*bnp+bnpp.*bnpp);
q=sum(en);
qsca=2*q/x2;
qabs=qext-qsca;
fn=(f(1,:)-f(2,:)).*cn;
gn=(-1).^n;
f(3,:)=fn.*gn;
q=sum(f(3,:));
qb=q*q'/x2;
asy1=c1n.*(anp.*g1(1,:)+anpp.*g1(2,:)+bnp.*g1(3,:)+bnpp.*g1(4,:));
asy2=c2n.*(anp.*bnp+anpp.*bnpp);
asy=4/x2*sum(asy1+asy2)/qsca;
qratio=qb/qsca;
result=[qext qsca qabs qb asy qratio];
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -