📄 mie_esquare.m
字号:
function result = Mie_Esquare(m, x, nj)
% Computation of nj+1 equally spaced values within (0,x)
% of the mean-absolute-square internal
% electric field of a sphere of size parameter x,
% complex refractive index m=m'+im",
% where the averaging is done over teta and phi,
% with unit-amplitude incident field;
% Ref. Bohren and Huffman (1983) BEWI:TDD122,
% and my own notes on this topic;
% k0=2*pi./wavelength;
% x=k0.*radius;
% C. M鋞zler, May 2002, revised July 2002
nmax=round(2+x+4*x^(1/3));
n=(1:nmax); nu =(n+0.5);
m1=real(m); m2=imag(m);
abcd=Mie_cd(m,x);
cn=abcd(1,:);dn=abcd(2,:);
cn2=abs(cn).^2;
dn2=abs(dn).^2;
dx=x/nj;
for j=1:nj,
xj=dx.*j;
z=m.*xj;
sqz= sqrt(0.5*pi./z);
bz = besselj(nu, z).*sqz; % This is jn(z)
bz2=(abs(bz)).^2;
b1z=[sin(z)/z, bz(1:nmax-1)]; % Note that sin(z)/z=j0(z)
az = b1z-n.*bz./z;
az2=(abs(az)).^2;
z2=(abs(z)).^2;
n1 =n.*(n+1);
n2 =2.*(2.*n+1);
mn=real(bz2.*n2);
nn1=az2;
nn2=bz2.*n1./z2;
nn=n2.*real(nn1+nn2);
en(j)=0.25*(cn2*mn'+dn2*nn');
end;
xxj=[0:dx:xj]; een=[en(1) en];
plot(xxj,een);
legend('Radial Dependence of (abs(E))^2')
title(sprintf('Squared Amplitude E Field in a Sphere, m=%g+%gi, x=%g',m1,m2,x))
xlabel('r k')
result=een;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -