📄 mie_rain1.m
字号:
function result = Mie_rain1(fGHz, TK, nsteps, dD)
% Efficiencies of rain extinction, scattering, absorption
% backscattering and asymmetric scattering, using Mie Theory and
% the dielectric model of Liebe et al. (1991), see epswater.
% Input: fGHz frequency in GHz, TK temperature in K, nsteps number
% of diameters (D in mm), dD increment of diameter in mm
% C. M鋞zler, June 2002
m=sqrt(epswater(fGHz, TK));
nx=(1:nsteps)';
D=(nx-1)*dD;
c0=299.793;
x=pi*D*fGHz/c0;
for j = 1:nsteps
a(j,:)=Mie(m,x(j));
end;
output_parameters='Qext, Qsca, Qabs, Qb, <costeta>'
% plotting the results
m1=real(m);m2=imag(m);
plot(D,a(:,1:5))
legend('Qext','Qsca','Qabs','Qb','<costeta>')
title(sprintf('Mie Efficiencies for raindrops f=%gGHz, T=%gK, m=%g+%gi',fGHz,TK,m1,m2))
xlabel('D (mm)')
ylabel('Mie Efficiency')
result=a;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -