📄 code5a.f90
字号:
!!!!!!!!!!!!!!!!!!!!!!!!!!! Program 5.A !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! Please Note: !! !! (1) This computer program is written by Tao Pang in conjunction with !! his book, "An Introduction to Computational Physics," published !! by Cambridge University Press in 1997. !! !! (2) No warranties, express or implied, are made for this program. !! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!MODULE CB REAL :: Q,B,WEND MODULE CB!PROGRAM PENDULUM!! Program for the power spectra of a driven pendulum under damping with! the fourth order Runge-Kutta algorithm. Given parameters: Q, B, and W! (omega_0). Copyright (c) Tao Pang 1997.! USE CB IMPLICIT NONE INTEGER, PARAMETER :: N=65536,L=128,M=16,MD=16 INTEGER :: I,J REAL :: PI,F1,H,OD,T,Y1,Y2,G1,GX1,G2,GX2 REAL :: DK11,DK21,DK12,DK22,DK13,DK23,DK14,DK24 REAL, DIMENSION (N) :: AR,AI,WR,WI,O REAL, DIMENSION (2,N) :: Y! PI = 4.0*ATAN(1.0) F1 = 1.0/SQRT(FLOAT(N)) W = 2.0/3.0 H = 2.0*PI/(L*W) OD = 2.0*PI/(N*H*W*W) Q = 0.5 B = 1.15 Y(1,1) = 0.0 Y(2,1) = 2.0!! Runge-Kutta algorithm to integrate the equation! DO I = 1, N-1 T = H*I Y1 = Y(1,I) Y2 = Y(2,I) DK11 = H*GX1(Y1,Y2,T) DK21 = H*GX2(Y1,Y2,T) DK12 = H*GX1((Y1+DK11/2.0),(Y2+DK21/2.0),(T+H/2.0)) DK22 = H*GX2((Y1+DK11/2.0),(Y2+DK21/2.0),(T+H/2.0)) DK13 = H*GX1((Y1+DK12/2.0),(Y2+DK22/2.0),(T+H/2.0)) DK23 = H*GX2((Y1+DK12/2.0),(Y2+DK22/2.0),(T+H/2.0)) DK14 = H*GX1((Y1+DK13),(Y2+DK23),(T+H)) DK24 = H*GX2((Y1+DK13),(Y2+DK23),(T+H)) Y(1,I+1) = Y(1,I)+(DK11+2.0*(DK12+DK13)+DK14)/6.0 Y(2,I+1) = Y(2,I)+(DK21+2.0*(DK22+DK23)+DK24)/6.0!! Bring theta back to region [-pi,pi]! IF (ABS(Y(1,I+1)).GT.PI) THEN Y(1,I+1) = Y(1,I+1) - 2.*PI*ABS(Y(1,I+1))/Y(1,I+1) END IF END DO! DO I = 1, N AR(I) = Y(1,I) WR(I) = Y(2,I) AI(I) = 0.0 WI(I) = 0.0 END DO CALL FFT (AR,AI,N,M) CALL FFT (WR,WI,N,M)! DO I = 1, N O(I) = (I-1)*OD AR(I) = (F1*AR(I))**2+(F1*AI(I))**2 WR(I) = (F1*WR(I))**2+(F1*WI(I))**2 AR(I) = ALOG10(AR(I)) WR(I) = ALOG10(WR(I)) END DO WRITE(6,"(3F16.10)") (O(I),AR(I),WR(I),I=1,(L*MD),4)END PROGRAM PENDULUM! SUBROUTINE FFT (AR,AI,N,M)!! An example of the fast Fourier transform subroutine with N = 2**M.! AR and AI are the real and imaginary part of data in the input and! corresponding Fourier coefficients in the output.! Copyright (c) Tao Pang 1997.! IMPLICIT NONE INTEGER, INTENT (IN) :: N,M INTEGER :: N1,N2,I,J,K,L,L1,L2 REAL :: PI,A1,A2,Q,U,V REAL, INTENT (INOUT), DIMENSION (N) :: AR,AI! PI = 4.0*ATAN(1.0) N2 = N/2! N1 = 2**M IF(N1.NE.N) STOP 'Indices do not match'!! Rearrange the data to the bit reversed order! L = 1 DO K = 1, N-1 IF (K.LT.L) THEN A1 = AR(L) A2 = AI(L) AR(L) = AR(K) AR(K) = A1 AI(L) = AI(K) AI(K) = A2 END IF J = N2 DO WHILE (J.LT.L) L = L-J J = J/2 END DO L = L+J END DO!! Perform additions at all levels with reordered data! L2 = 1 DO L = 1, M Q = 0.0 L1 = L2 L2 = 2*L1 DO K = 1, L1 U = COS(Q) V = -SIN(Q) Q = Q + PI/L1 DO J = K, N, L2 I = J + L1 A1 = AR(I)*U-AI(I)*V A2 = AR(I)*V+AI(I)*U AR(I) = AR(J)-A1 AR(J) = AR(J)+A1 AI(I) = AI(J)-A2 AI(J) = AI(J)+A2 END DO END DO END DOEND SUBROUTINE FFT!FUNCTION GX1 (Y1,Y2,T) RESULT (G1)! G1 = Y2END FUNCTION GX1!FUNCTION GX2 (Y1,Y2,T) RESULT (G2) USE CB! G2 = -Q*Y2-SIN(Y1)+B*COS(W*T)END FUNCTION GX2
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -