⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 code43.f90

📁 Fortran 90 and HPF Programs Related to the Book
💻 F90
字号:
! Updated 10/24/2001.!!!!!!!!!!!!!!!!!!!!!!!!!!!!   Program 4.3   !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!                                                                       !! Please Note:                                                          !!                                                                       !! (1) This computer program is written by Tao Pang in conjunction with  !!     his book, "An Introduction to Computational Physics," published   !!     by Cambridge University Press in 1997.                            !!                                                                       !! (2) No warranties, express or implied, are made for this program.     !!                                                                       !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!PROGRAM EX43!!! An example of solving linear equation set A(N,N)*X(N) = B(N)! with the partial-pivoting Gaussian elimination scheme.  The! numerical values are for the Wheatstone bridge example discussed! in Section 4.1 in the book with all resistances being 100 ohms! and the voltage 200 volts.!  IMPLICIT NONE  INTEGER, PARAMETER :: N=3  INTEGER :: I,J  INTEGER, DIMENSION (N) :: INDX  REAL, DIMENSION (N) :: X,B  REAL, DIMENSION (N,N) :: A  DATA B /200.0,0.0,0.0/, &       ((A(I,J), J=1,N),I=1,N) /100.0,100.0,100.0,-100.0, &                         300.0,-100.0,-100.0,-100.0, 300.0/!  CALL LEGS (A,N,B,X,INDX)!  WRITE (6, "(F16.8)") (X(I), I=1,N)END PROGRAM EX43SUBROUTINE LEGS (A,N,B,X,INDX)!! Subroutine to solve the equation A(N,N)*X(N) = B(N) with the! partial-pivoting Gaussian elimination scheme.! Copyright (c) Tao Pang 2001.!  IMPLICIT NONE  INTEGER, INTENT (IN) :: N  INTEGER :: I,J  INTEGER, INTENT (OUT), DIMENSION (N) :: INDX  REAL, INTENT (INOUT), DIMENSION (N,N) :: A  REAL, INTENT (INOUT), DIMENSION (N) :: B  REAL, INTENT (OUT), DIMENSION (N) :: X!  CALL ELGS (A,N,INDX)!  DO I = 1, N-1    DO J = I+1, N      B(INDX(J)) = B(INDX(J))-A(INDX(J),I)*B(INDX(I))    END DO  END DO!  X(N) = B(INDX(N))/A(INDX(N),N)  DO I = N-1, 1, -1    X(I) = B(INDX(I))    DO J = I+1, N      X(I) = X(I)-A(INDX(I),J)*X(J)    END DO    X(I) =  X(I)/A(INDX(I),I)  END DO!END SUBROUTINE LEGS!SUBROUTINE ELGS (A,N,INDX)!! Subroutine to perform the partial-pivoting Gaussian elimination.! A(N,N) is the original matrix in the input and transformed matrix! plus the pivoting element ratios below the diagonal in the output.! INDX(N) records the pivoting order.  Copyright (c) Tao Pang 2001.!  IMPLICIT NONE  INTEGER, INTENT (IN) :: N  INTEGER :: I,J,K,ITMP  INTEGER, INTENT (OUT), DIMENSION (N) :: INDX  REAL :: C1,PI,PI1,PJ  REAL, INTENT (INOUT), DIMENSION (N,N) :: A  REAL, DIMENSION (N) :: C!! Initialize the index!  DO I = 1, N    INDX(I) = I  END DO!! Find the rescaling factors, one from each row!  DO I = 1, N    C1= 0.0    DO J = 1, N      C1 = AMAX1(C1,ABS(A(I,J)))    END DO    C(I) = C1  END DO!! Search the pivoting (largest) element from each column!  DO J = 1, N-1    PI1 = 0.0    DO I = J, N      PI = ABS(A(INDX(I),J))/C(INDX(I))      IF (PI.GT.PI1) THEN        PI1 = PI        K   = I      ENDIF    END DO!! Interchange the rows via INDX(N) to record pivoting order!    ITMP    = INDX(J)    INDX(J) = INDX(K)    INDX(K) = ITMP    DO I = J+1, N      PJ  = A(INDX(I),J)/A(INDX(J),J)!! Record pivoting ratios below the diagonal!      A(INDX(I),J) = PJ!! Modify other elements accordingly!      DO K = J+1, N        A(INDX(I),K) = A(INDX(I),K)-PJ*A(INDX(J),K)      END DO    END DO  END DO!END SUBROUTINE ELGS

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -