📄 lms_equalizer_simulate.m
字号:
% Avetis Ioannisyan
% avetis@60ateight.com
% Last Updated: 11/30/05
% LMS Channel Adaptation
% reset randomizers
randn('state',sum(100*clock)) ;
rand('state',sum(100*clock)) ;
numPoints = 5000;
numTaps = 10; % channel order
Mu = 0.01; % iteration step size
% input is guassian
x = randn(numPoints,1) + i*randn(numPoints,1);
% choose channel to be random uniform
h = rand(numTaps, 1);% + i*rand(numTaps, 1);
%h = [1 0 0 0 1]; %testing only
h = h/max(h); %normalize channel
% convolve channel with the input
d = filter(h, 1, x);
% initialize variables
w = [];
y = [];
in = [];
e = []; % error, final result to be computed
w = zeros(numTaps+1,1) + i*zeros(numTaps+1,1);
% LMS Adaptation
for n = numTaps+1 : numPoints
% select part of training input
in = x(n : -1 : n-numTaps) ;
y(n) = w'*in;
% compute error
e(n) = d(n)-y(n);
% update taps
w = w + Mu*( real(e(n)*conj(in)) - i*imag(e(n)*conj(in)) );
end
% Plot results
figure(10);
semilogy(abs(e));
title(['LMS Adaptation Learning Curve Using Mu = ', num2str(Mu)]);
xlabel('Iteration Number');
ylabel('Output Estimation Error in dB');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -