📄 pwm.cpp
字号:
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "PWM.h"
#include "DigitalModule.h"
#include "Resource.h"
#include "Utility.h"
static Resource *allocated = NULL;
/**
* Initialize PWMs given an module and channel.
*
* This method is private and is the common path for all the constructors for creating PWM
* instances. Checks module and channel value ranges and allocates the appropriate channel.
* The allocation is only done to help users ensure that they don't double assign channels.
*/
void PWM::InitPWM(UINT32 slot, UINT32 channel)
{
Resource::CreateResourceObject(&allocated, tDIO::kNumSystems * kPwmChannels);
CheckPWMModule(slot);
CheckPWMChannel(channel);
allocated->Allocate(DigitalModule::SlotToIndex(slot) * kPwmChannels + channel - 1);
m_channel = channel;
m_module = DigitalModule::GetInstance(slot);
m_module->SetPWM(m_channel, kPwmDisabled);
m_eliminateDeadband = false;
}
/**
* Allocate a PWM given a module and channel.
* Allocate a PWM using a module and channel number.
*
* @param slot The slot the digital module is plugged into.
* @param channel The PWM channel on the digital module.
*/
PWM::PWM(UINT32 slot, UINT32 channel)
{
InitPWM(slot, channel);
}
/**
* Allocate a PWM in the default module given a channel.
*
* Using a default module allocate a PWM given the channel number. The default module is the first
* slot numerically in the cRIO chassis.
*
* @param channel The PWM channel on the digital module.
*/
PWM::PWM(UINT32 channel)
{
InitPWM(GetDefaultDigitalModule(), channel);
}
/**
* Free the PWM channel.
*
* Free the resource associated with the PWM channel and set the value to 0.
*/
PWM::~PWM()
{
m_module->SetPWM(m_channel, kPwmDisabled);
allocated->Free(DigitalModule::SlotToIndex(m_module->GetSlot()) * kPwmChannels + m_channel - 1);
}
/**
* Optionally eliminate the deadband from a speed controller.
* @param eliminateDeadband If true, set the motor curve on the Jaguar to eliminate
* the deadband in the middle of the range. Otherwise, keep the full range without
* modifying any values.
*/
void PWM::EnableDeadbandElimination(bool eliminateDeadband)
{
m_eliminateDeadband = eliminateDeadband;
}
/**
* Set the bounds on the PWM values.
* This sets the bounds on the PWM values for a particular each type of controller. The values
* determine the upper and lower speeds as well as the deadband bracket.
* @param max The Minimum pwm value
* @param deadbandMax The high end of the deadband range
* @param center The center speed (off)
* @param deadbandMin The low end of the deadband range
* @param min The minimum pwm value
*/
void PWM::SetBounds(INT32 max, INT32 deadbandMax, INT32 center, INT32 deadbandMin, INT32 min)
{
m_maxPwm = max;
m_deadbandMaxPwm = deadbandMax;
m_centerPwm = center;
m_deadbandMinPwm = deadbandMin;
m_minPwm = min;
}
/**
* Set the PWM value based on a position.
*
* This is intended to be used by servos.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinNegativePwm() called.
*
* @param pos The position to set the servo between 0.0 and 1.0.
*/
void PWM::SetPosition(float pos)
{
if (pos < 0.0)
{
pos = 0.0;
}
else if (pos > 1.0)
{
pos = 1.0;
}
INT32 rawValue;
// note, need to perform the multiplication below as floating point before converting to int
rawValue = (INT32)( (pos * (float) GetFullRangeScaleFactor()) + GetMinNegativePwm());
wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <= GetMaxPositivePwm()));
wpi_assert(rawValue != kPwmDisabled);
// send the computed pwm value to the FPGA
SetRaw((UINT8)rawValue);
}
/**
* Get the PWM value in terms of a position.
*
* This is intended to be used by servos.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinNegativePwm() called.
*
* @return The position the servo is set to between 0.0 and 1.0.
*/
float PWM::GetPosition()
{
INT32 value = GetRaw();
if (value < GetMinNegativePwm())
{
return 0.0;
}
else if (value > GetMaxPositivePwm())
{
return 1.0;
}
else
{
return (float)(value - GetMinNegativePwm()) / (float)GetFullRangeScaleFactor();
}
}
/**
* Set the PWM value based on a speed.
*
* This is intended to be used by speed controllers.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinPositivePwm() called.
* @pre SetCenterPwm() called.
* @pre SetMaxNegativePwm() called.
* @pre SetMinNegativePwm() called.
*
* @param speed The speed to set the speed controller between -1.0 and 1.0.
*/
void PWM::SetSpeed(float speed)
{
// clamp speed to be in the range 1.0 >= speed >= -1.0
if (speed < -1.0)
{
speed = -1.0;
}
else if (speed > 1.0)
{
speed = 1.0;
}
// calculate the desired output pwm value by scaling the speed appropriately
INT32 rawValue;
if (speed == 0.0)
{
rawValue = GetCenterPwm();
}
else if (speed > 0.0)
{
rawValue = (INT32)(speed * ((float)GetPositiveScaleFactor()) +
((float) GetMinPositivePwm()) + 0.5);
}
else
{
rawValue = (INT32)(speed * ((float)GetNegativeScaleFactor()) +
((float) GetMaxNegativePwm()) + 0.5);
}
// the above should result in a pwm_value in the valid range
wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <= GetMaxPositivePwm()));
wpi_assert(rawValue != kPwmDisabled);
// send the computed pwm value to the FPGA
SetRaw((UINT8)rawValue);
}
/**
* Get the PWM value in terms of speed.
*
* This is intended to be used by speed controllers.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinPositivePwm() called.
* @pre SetMaxNegativePwm() called.
* @pre SetMinNegativePwm() called.
*
* @return The most recently set speed between -1.0 and 1.0.
*/
float PWM::GetSpeed()
{
INT32 value = GetRaw();
if (value > GetMaxPositivePwm())
{
return 1.0;
}
else if (value < GetMinNegativePwm())
{
return -1.0;
}
else if (value > GetMinPositivePwm())
{
return (float)(value - GetMinPositivePwm()) / (float)GetPositiveScaleFactor();
}
else if (value < GetMaxNegativePwm())
{
return (float)(value - GetMaxNegativePwm()) / (float)GetNegativeScaleFactor();
}
else
{
return 0.0;
}
}
/**
* Set the PWM value directly to the hardware.
*
* Write a raw value to a PWM channel.
*
* @param value Raw PWM value. Range 0 - 255.
*/
void PWM::SetRaw(UINT8 value)
{
m_module->SetPWM(m_channel, value);
}
/**
* Get the PWM value directly from the hardware.
*
* Read a raw value from a PWM channel.
*
* @return Raw PWM control value. Range: 0 - 255.
*/
UINT8 PWM::GetRaw()
{
return m_module->GetPWM(m_channel);
}
/**
* Slow down the PWM signal for old devices.
*
* @param mult The period multiplier to apply to this channel
*/
void PWM::SetPeriodMultiplier(PeriodMultiplier mult)
{
switch(mult)
{
case kPeriodMultiplier_4X:
m_module->SetPWMPeriodScale(m_channel, 3); // Squelch 3 out of 4 outputs
break;
case kPeriodMultiplier_2X:
m_module->SetPWMPeriodScale(m_channel, 1); // Squelch 1 out of 2 outputs
break;
case kPeriodMultiplier_1X:
m_module->SetPWMPeriodScale(m_channel, 0); // Don't squelch any outputs
break;
default:
wpi_assert(false);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -