📄 encoder.cpp
字号:
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "Encoder.h"
#include "DigitalInput.h"
#include "Resource.h"
#include "Utility.h"
#include "WPIStatus.h"
static Resource *quadEncoders = NULL;
/**
* Common initialization code for Encoders.
* This code allocates resources for Encoders and is common to all constructors.
* @param reverseDirection If true, counts down instead of up (this is all relative)
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType)
{
m_encodingType = encodingType;
switch (encodingType)
{
case k4X:
Resource::CreateResourceObject(&quadEncoders, tEncoder::kNumSystems);
//TODO: need to check for errors here
m_index = quadEncoders->Allocate();
m_encoder = new tEncoder(m_index, &status);
m_encoder->writeConfig_ASource_Module(m_aSource->GetModuleForRouting(), &status);
m_encoder->writeConfig_ASource_Channel(m_aSource->GetChannelForRouting(), &status);
m_encoder->writeConfig_ASource_AnalogTrigger(m_aSource->GetAnalogTriggerForRouting(), &status);
m_encoder->writeConfig_BSource_Module(m_bSource->GetModuleForRouting(), &status);
m_encoder->writeConfig_BSource_Channel(m_bSource->GetChannelForRouting(), &status);
m_encoder->writeConfig_BSource_AnalogTrigger(m_bSource->GetAnalogTriggerForRouting(), &status);
m_encoder->strobeReset(&status);
m_encoder->writeConfig_Reverse(reverseDirection, &status);
m_encoder->writeTimerConfig_AverageSize(1, &status);
m_counter = NULL;
break;
case k1X:
case k2X:
m_counter = new Counter(m_encodingType, m_aSource, m_bSource, reverseDirection);
break;
}
m_distancePerPulse = 1.0;
wpi_assertCleanStatus(status);
}
/**
* Encoder constructor.
* Construct a Encoder given a and b modules and channels fully specified.
* @param aSlot The a channel digital input module.
* @param aChannel The a channel digital input channel.
* @param bSlot The b channel digital input module.
* @param bChannel The b channel digital input channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(UINT32 aSlot, UINT32 aChannel,
UINT32 bSlot, UINT32 bChannel,
bool reverseDirection, EncodingType encodingType)
{
m_aSource = new DigitalInput(aSlot, aChannel);
m_bSource = new DigitalInput(bSlot, bChannel);
InitEncoder(reverseDirection, encodingType);
m_allocatedASource = true;
m_allocatedBSource = true;
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels assuming the default module.
* @param aChannel The a channel digital input channel.
* @param bChannel The b channel digital input channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(UINT32 aChannel, UINT32 bChannel, bool reverseDirection, EncodingType encodingType)
{
m_aSource = new DigitalInput(aChannel);
m_bSource = new DigitalInput(bChannel);
InitEncoder(reverseDirection, encodingType);
m_allocatedASource = true;
m_allocatedBSource = true;
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels as digital inputs. This is used in the case
* where the digital inputs are shared. The Encoder class will not allocate the digital inputs
* and assume that they already are counted.
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, bool reverseDirection, EncodingType encodingType)
{
m_aSource = aSource;
m_bSource = bSource;
m_allocatedASource = false;
m_allocatedBSource = false;
if (m_aSource == NULL || m_bSource == NULL)
wpi_fatal(NullParameter);
else
InitEncoder(reverseDirection, encodingType);
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels as digital inputs. This is used in the case
* where the digital inputs are shared. The Encoder class will not allocate the digital inputs
* and assume that they already are counted.
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, bool reverseDirection, EncodingType encodingType)
{
m_aSource = &aSource;
m_bSource = &bSource;
m_allocatedASource = false;
m_allocatedBSource = false;
InitEncoder(reverseDirection, encodingType);
}
/**
* Free the resources for an Encoder.
* Frees the FPGA resources associated with an Encoder.
*/
Encoder::~Encoder()
{
if (m_allocatedASource) delete m_aSource;
if (m_allocatedBSource) delete m_bSource;
if (m_counter)
{
delete m_counter;
}
else
{
quadEncoders->Free(m_index);
delete m_encoder;
}
}
/**
* Start the Encoder.
* Starts counting pulses on the Encoder device.
*/
void Encoder::Start()
{
if (m_counter)
m_counter->Start();
else
{
m_encoder->writeEnable(1, &status);
wpi_assertCleanStatus(status);
}
}
/**
* Stops counting pulses on the Encoder device. The value is not changed.
*/
void Encoder::Stop()
{
if (m_counter)
m_counter->Stop();
else
{
m_encoder->writeEnable(0, &status);
wpi_assertCleanStatus(status);
}
}
/**
* Gets the raw value from the encoder.
* The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
* factor.
* @return Current raw count from the encoder
*/
INT32 Encoder::GetRaw()
{
INT32 value;
if (m_counter)
value = m_counter->Get();
else
{
value = m_encoder->readOutput_Value(&status);
wpi_assertCleanStatus(status);
}
return value;
}
/**
* Gets the current count.
* Returns the current count on the Encoder.
* This method compensates for the decoding type.
*
* @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor.
*/
INT32 Encoder::Get()
{
return (INT32) (GetRaw() * DecodingScaleFactor());
}
/**
* Reset the Encoder distance to zero.
* Resets the current count to zero on the encoder.
*/
void Encoder::Reset()
{
if (m_counter)
m_counter->Reset();
else
{
m_encoder->strobeReset(&status);
wpi_assertCleanStatus(status);
}
}
/**
* Returns the period of the most recent pulse.
* Returns the period of the most recent Encoder pulse in seconds.
* This method compenstates for the decoding type.
*
* @deprecated Use GetRate() in favor of this method. This returns unscaled periods and GetRate() scales using value from SetDistancePerPulse().
*
* @return Period in seconds of the most recent pulse.
*/
double Encoder::GetPeriod()
{
if (m_counter)
{
return m_counter->GetPeriod() * DecodingScaleFactor();
}
else
{
tEncoder::tTimerOutput output = m_encoder->readTimerOutput(&status);
double value;
if (output.Stalled)
{
// Return infinity
double zero = 0.0;
value = 1.0 / zero;
}
else
{
value = (double)output.Period / (double)output.Count;
}
wpi_assertCleanStatus(status);
// Workaround artf4249: treat the 4x decoder as a 2x decoder for for the timer only.
// Should be multiplied by 0.25 for 4x decoding... using 0.5 as 2x
return value * 1.0e-6 / (DecodingScaleFactor() * 2.0);
}
}
/**
* Sets the maximum period for stopped detection.
* Sets the value that represents the maximum period of the Encoder before it will assume
* that the attached device is stopped. This timeout allows users to determine if the wheels or
* other shaft has stopped rotating.
* This method compensates for the decoding type.
*
* @deprecated Use SetMinRate() in favor of this method. This takes unscaled periods and SetMinRate() scales using value from SetDistancePerPulse().
*
* @param maxPeriod The maximum time between rising and falling edges before the FPGA will
* report the device stopped. This is expressed in seconds.
*/
void Encoder::SetMaxPeriod(double maxPeriod)
{
if (m_counter)
{
m_counter->SetMaxPeriod(maxPeriod * DecodingScaleFactor());
}
else
{
// Workaround artf4249: treat the 4x decoder as a 2x decoder for for the timer only.
// Should be multiplied by 0.25 for 4x decoding... using 0.5 as 2x
m_encoder->writeTimerConfig_StallPeriod((UINT32)(maxPeriod * 1.0e6 * DecodingScaleFactor() * 2.0), &status);
wpi_assertCleanStatus(status);
}
}
/**
* Determine if the encoder is stopped.
* Using the MaxPeriod value, a boolean is returned that is true if the encoder is considered
* stopped and false if it is still moving. A stopped encoder is one where the most recent pulse
* width exceeds the MaxPeriod.
* @return True if the encoder is considered stopped.
*/
bool Encoder::GetStopped()
{
if (m_counter)
{
return m_counter->GetStopped();
}
else
{
bool value = m_encoder->readTimerOutput_Stalled(&status) != 0;
wpi_assertCleanStatus(status);
return value;
}
}
/**
* The last direction the encoder value changed.
* @return The last direction the encoder value changed.
*/
bool Encoder::GetDirection()
{
if (m_counter)
{
return m_counter->GetDirection();
}
else
{
bool value = m_encoder->readOutput_Direction(&status);
wpi_assertCleanStatus(status);
return value;
}
}
/**
* The scale needed to convert a raw counter value into a number of encoder pulses.
*/
double Encoder::DecodingScaleFactor()
{
switch (m_encodingType)
{
case k1X:
return 1.0;
case k2X:
return 0.5;
case k4X:
return 0.25;
default:
//TODO: fill this in
return 0.0;
}
}
/**
* Get the distance the robot has driven since the last reset.
*
* @return The distance driven since the last reset as scaled by the value from SetDistancePerPulse().
*/
double Encoder::GetDistance()
{
return GetRaw() * DecodingScaleFactor() * m_distancePerPulse;
}
/**
* Get the current rate of the encoder.
* Units are distance per second as scaled by the value from SetDistancePerPulse().
*
* @return The current rate of the encoder.
*/
double Encoder::GetRate()
{
return m_distancePerPulse / GetPeriod() * (GetDirection() ? 1.0 : -1.0);
}
/**
* Set the minimum rate of the device before the hardware reports it stopped.
*
* @param minRate The minimum rate. The units are in distance per second as scaled by the value from SetDistancePerPulse().
*/
void Encoder::SetMinRate(double minRate)
{
SetMaxPeriod(m_distancePerPulse / minRate);
}
/**
* Set the distance per pulse for this encoder.
* This sets the multiplier used to determine the distance driven based on the count value
* from the encoder.
* Do not include the decoding type in this scale. The library already compensates for the decoding type.
* Set this value based on the encoder's rated Pulses per Revolution and
* factor in gearing reductions following the encoder shaft.
* This distance can be in any units you like, linear or angular.
*
* @param distancePerPulse The scale factor that will be used to convert pulses to useful units.
*/
void Encoder::SetDistancePerPulse(double distancePerPulse)
{
m_distancePerPulse = distancePerPulse;
}
/**
* Set the direction sensing for this encoder.
* This sets the direction sensing on the encoder so that it could count in the correct
* software direction regardless of the mounting.
* @param reverseDirection true if the encoder direction should be reversed
*/
void Encoder::SetReverseDirection(bool reverseDirection)
{
if (m_counter)
{
m_counter->SetReverseDirection(reverseDirection);
}
else
{
m_encoder->writeConfig_Reverse(reverseDirection, &status);
wpi_assertCleanStatus(status);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -