⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 structuredlinearequations.vb

📁 这里是用VB写的数学库。以前用C、C++写的比较多。内容有:复数运算、矩阵运算、解方程、积分微分等。非常有用。
💻 VB
字号:
' The structured matrix classes reside in the 
' Extreme.Mathematics.LinearAlgebra namespace.
Imports Extreme.Mathematics.LinearAlgebra

Namespace Extreme.Mathematics.QuickStart.VB

    ' Illustrates solving symmetrical and triangular systems 
    ' of simultaneous linear equations using classes 
    ' in the Extreme.Mathematics.LinearAlgebra namespace of the Extreme 
    ' Optimization Mathematics Library for .NET.
    Module StructuredLinearEquations

        Sub Main()
            ' To learn more about solving general systems of
            ' simultaneous linear equations, see the
            ' LinearEquations QuickStart Sample.
            '
            ' The methods and classes available for solving
            ' structured systems of equations are similar
            ' to those for general equations.

            '
            ' Triangular systems and matrices
            '

            Console.WriteLine("Triangular matrices:")
            ' For the basics of working with triangular 
            ' matrices, see the TriangularMatrices QuickStart
            ' Sample.
            '
            ' Let's start with a triangular matrix. Remember
            ' that elements are stored in column-major order
            ' by default.
            Dim t As TriangularMatrix = New TriangularMatrix( _
                MatrixTriangleMode.Upper, 4, New Double() _
                   {1, 0, 0, 0, _
                    1, 2, 0, 0, _
                    1, 4, 1, 0, _
                    1, 3, 1, 2})
            Dim b1 As Vector = New GeneralVector(1, 3, 6, 3)
            Dim b2 As GeneralMatrix = New GeneralMatrix(4, 2, New Double() _
                {1, 3, 6, 3, _
                 2, 3, 5, 8})
            Console.WriteLine("t = {0:F4}", t)

            '
            ' The Solve method
            '

            ' The following solves m x = b1. The second 
            ' parameter specifies whether to overwrite the
            ' right-hand side with the result.
            Dim x1 As Vector = t.Solve(b1, False)
            Console.WriteLine("x1 = {0:F4}", x1)
            ' If the overwrite parameter is omitted, the
            ' right-hand-side is overwritten with the solution:
            t.Solve(b1)
            Console.WriteLine("b1 = {0:F4}", b1)
            ' You can solve for multiple right hand side 
            ' vectors by passing them in a GeneralMatrix:
            Dim x2 As GeneralMatrix = t.Solve(b2, False)
            Console.WriteLine("x2 = {0:F4}", x2)

            '
            ' Related Methods
            '

            ' You can verify whether a matrix is singular
            ' using the IsSingular method:
            Console.WriteLine("IsSingular(t) = {0:F4}", _
                t.IsSingular())
            ' The inverse matrix is returned by the GetInverse
            ' method:
            Console.WriteLine("GetInverse(t) = {0:F4}", t.GetInverse())
            ' The determinant is also available:
            Console.WriteLine("Det(t) = {0:F4}", t.GetDeterminant())
            ' The condition number is an estimate for the
            ' loss of precision in solving the equations
            Console.WriteLine("Cond(t) = {0:F4}", t.EstimateConditionNumber())
            Console.WriteLine()

            '
            ' Symmetric systems and matrices
            '

            Console.WriteLine("Symmetric matrices:")
            ' For the basics of working with symmetric 
            ' matrices, see the SymmetricMatrices QuickStart
            ' Sample.
            '
            ' Let's start with a symmetric matrix. Remember
            ' that elements are stored in column-major order
            ' by default.
            Dim s As SymmetricMatrix = New SymmetricMatrix( _
                4, New Double() _
                            {1, 0, 0, 0, _
              1, 2, 0, 0, _
              1, 1, 2, 0, _
              1, 0, 1, 4}, MatrixTriangleMode.Upper)
            b1 = New GeneralVector(1, 3, 6, 3)
            Console.WriteLine("s = {0:F4}", s)

            '
            ' The Solve method
            '

            ' The following solves m x = b1. The second 
            ' parameter specifies whether to overwrite the
            ' right-hand side with the result.
            x1 = s.Solve(b1, False)
            Console.WriteLine("x1 = {0:F4}", x1)
            ' If the overwrite parameter is omitted, the
            ' right-hand-side is overwritten with the solution:
            s.Solve(b1)
            Console.WriteLine("b1 = {0:F4}", b1)
            ' You can solve for multiple right hand side 
            ' vectors by passing them in a GeneralMatrix:
            x2 = s.Solve(b2, False)
            Console.WriteLine("x2 = {0:F4}", x2)

            '
            ' Related Methods
            '

            ' You can verify whether a matrix is singular
            ' using the IsSingular method:
            Console.WriteLine("IsSingular(s) = {0}", _
                s.IsSingular())
            ' The inverse matrix is returned by the GetInverse
            ' method:
            Console.WriteLine("GetInverse(s) = {0:F4}", s.GetInverse())
            ' The determinant is also available:
            Console.WriteLine("Det(s) = {0:F4}", s.GetDeterminant())
            ' The condition number is an estimate for the
            ' loss of precision in solving the equations
            Console.WriteLine("Cond(s) = {0:F4}", s.EstimateConditionNumber())
            Console.WriteLine()

            '
            ' The CholeskyDecomposition class
            '

            ' If the symmetric matrix is positive definite,
            ' you can use the CholeskyDecomposition class
            ' to optimize performance if multiple operations 
            ' need to be performed. This class does the
            ' bulk of the calculations only once. This
            ' decomposes the matrix into G x transpose(G)
            ' where G is a lower triangular matrix.
            '
            ' If the matrix is indefinite, you need to use
            ' the LUDecomposition class instead. See the
            ' LinearEquations QuickStart Sample for details.
            Console.WriteLine("Using Cholesky Decomposition:")
            ' The constructor takes an optional second argument
            ' indicating whether to overwrite the original
            ' matrix with its decomposition:
            Dim cf As CholeskyDecomposition = _
                New CholeskyDecomposition(s, False)
            ' The Factorize method performs the actual
            ' factorization. It is called automatically
            ' if needed.
            cf.Decompose()
            ' All methods mentioned earlier are still available:
            x2 = cf.Solve(b2, False)
            Console.WriteLine("x2 = {0:F4}", x2)
            Console.WriteLine("IsSingular(m) = {0}", _
                cf.IsSingular())
            Console.WriteLine("Inverse(m) = {0:F4}", cf.GetInverse())
            Console.WriteLine("Det(m) = {0:F4}", cf.GetDeterminant())
            Console.WriteLine("Cond(m) = {0:F4}", cf.EstimateConditionNumber())
            ' In addition, you have access to the
            ' triangular matrix, G, of the composition.
            Console.WriteLine("  G = {0:F4}", cf.LowerTriangularFactor)

            ' Note that if the matrix is indefinite,
            ' the factorization will fail and throw a
            ' MatrixNotPositiveDefiniteException.
            s(0, 0) = -99
            cf = New CholeskyDecomposition(s)
            Try
                cf.Decompose()
            Catch e As MatrixNotPositiveDefiniteException
                Console.WriteLine(e.Message)
            End Try
            ' The SymmetricMatrix class take care of this
            ' possibility automatically, but is much less
            ' efficient:
            Console.WriteLine("Cond s = {0:F4}", s.EstimateConditionNumber())

            Console.Write("Press Enter key to exit...")
            Console.ReadLine()
        End Sub

    End Module

End Namespace

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -