⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 compare.rd

📁 r软件 另一款可以计算核估计的软件包 需安装r软件
💻 RD
字号:
\name{compare, compare.kda.diag.cv, compare.kda.cv}\alias{compare}\alias{compare.kda.diag.cv}\alias{compare.kda.cv}\title{Comparisons for kernel discriminant analysis}\description{  Comparisons for kernel discriminant analysis.}\usage{compare(x.group, est.group, by.group=FALSE)compare.kda.cv(x, x.group, bw="plugin", prior.prob=NULL, Hstart,    by.group=FALSE, trace=FALSE, binned=FALSE, bgridsize,    recompute=FALSE, ...)compare.kda.diag.cv(x, x.group, bw="plugin", prior.prob=NULL,    by.group=FALSE, trace=FALSE, binned=FALSE, bgridsize,    recompute=FALSE, ...)}\arguments{  \item{x}{matrix of training data values}  \item{x.group}{vector of group labels for training data}  \item{est.group}{vector of estimated group labels}  \item{bw}{\code{"plugin"} = plug-in, \code{"lscv"} = LSCV, \code{"scv"} = SCV}  \item{Hstart}{(stacked) matrix of initial bandwidth matrices}  \item{prior.prob}{vector of prior probabilities}  \item{by.group}{flag to give results also within each group}  \item{trace}{flag for printing messages in command line to    trace the execution}  \item{binned}{flag for binned kernel estimation}  \item{bgridsize}{vector of binning grid sizes - only required if    \code{binned=TRUE}}  \item{recompute}{flag for recomputing the bandwidth matrix after    excluding the i-th data item}  \item{...}{other optional parameters for bandwidth selection, see    \code{\link{Hpi}}, \code{\link{Hlscv}}, \code{\link{Hscv}}} }\value{   The functions create a comparison between the true  group labels \code{x.group} and the estimated ones.   It returns a list with fields  \item{cross}{cross-classification table with the rows    indicating the true group and the columns the estimated group}  \item{error}{misclassification rate (MR)}      In the case where we have test data that is independent of the  training data, \code{compare} computes        \deqn{\textrm{MR} = \frac{\textrm{number of points wrongly	  classified}}{\textrm{total number of	  points}}.}{MR = (number of points wrongly classified) / (total number of      points).}      In the case where we don't have independent test data e.g.  we are classifying the training data set itself, then the cross  validated estimate of MR is more appropriate.  See Silverman (1986). These  are implemented as \code{compare.kda.cv} (full bandwidth  selectors) and \code{compare.kda.diag.cv} (for diagonal bandwidth  selectors). These functions are only available for d > 1.  If \code{by.group=FALSE} then only the total MR rate is given. If it  is set to TRUE, then the MR rates for each class are also given  (estimated number in group divided by true number).}\references{  Silverman, B. W. (1986) \emph{Data Analysis for Statistics and Data    Analysis}. Chapman \& Hall. London.    Simonoff, J. S. (1996) \emph{Smoothing Methods in Statistics}.  Springer-Verlag. New York  Venables, W.N. & Ripley, B.D. (1997) \emph{Modern Applied Statistics with    S-PLUS}. Springer-Verlag. New York.   }\details{  If you have prior probabilities then set \code{prior.prob} to these.  Otherwise \code{prior.prob=NULL} is the default i.e. use  the sample proportions as   estimates of the prior probabilities.  If \code{trace=TRUE}, a message is printed in the command line  indicating that it's processing the i-th data item:  cross-validated estimates may take a long time to execute.}\seealso{  \code{\link{kda.kde}}}\examples{### univariate example -- independent test datax <- c(rnorm.mixt(n=100, mus=1, sigmas=1, props=1),       rnorm.mixt(n=100, mus=-1, sigmas=1, props=1))x.gr <- rep(c(1,2), times=c(100,100))y <- c(rnorm.mixt(n=100, mus=1, sigmas=1, props=1),       rnorm.mixt(n=100, mus=-1, sigmas=1, props=1))kda.gr <- kda(x, x.gr, hs=sqrt(c(0.09, 0.09)), y=y)compare(x.gr, kda.gr)compare(x.gr, kda.gr, by.group=TRUE) ### bivariate example - restricted iris dataset, dependent test datalibrary(MASS)data(iris)ir <- iris[,c(1,2)]ir.gr <- iris[,5]compare.kda.cv(ir, ir.gr, bw="plug-in", pilot="samse")}\keyword{ smooth }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -