📄 ks-package.rd
字号:
\name{ks}\alias{ks}\docType{package}\title{ks}\description{ Kernel density estimation and kernel discriminant analysis for data from 1- to 6-dimensions, with display functions. }\details{ There are three main types of functions in this package: (a) computing bandwidth selectors, (b) computing kernel estimators and (c) displaying kernel estimators. For the bandwidth matrix selectors, there are several varieties:\cr (i) plug-in \code{\link{hpi}} (1-d); \code{\link{Hpi}}, \code{\link{Hpi.diag}} (2- to 6-d) \cr (ii) least squares (or unbiased) cross validation (LSCV or UCV) \code{\link{Hlscv}}, \code{\link{Hlscv.diag}} (2- to 6-d) \cr (iii) biased cross validation (BCV) \code{\link{Hbcv}}, \code{\link{Hbcv.diag}} (2- to 6-d) \cr (iv) smoothed cross validation (SCV) \code{\link{hscv}} (1-d); \code{\link{Hscv}}, \code{\link{Hscv.diag}} (2- to 6-d) \cr (v) normal scale selectors \code{\link{hmise.mixt}}, \code{\link{hamise.mixt}} (1-d); and \code{\link{Hmise.mixt}}, \code{\link{Hamise.mixt}} (2- to 6-d). For kernel density estimation, the main function is \code{\link{kde}}. For kernel discriminant analysis, it's \code{\link{kda.kde}}. For display, \code{plot} via (\code{\link{plot.kde}} and \code{\link{plot.kda.kde}}) sends to a graphics window the results of density estimation or discriminant analysis. Binned kernel estimation is available for d = 1, 2, 3, 4. For an overview of this package with 2-d density estimation, see \code{vignette("kde")}. }\author{ Tarn Duong for most of the package. Matt Wand for the binned estimation, univariate plug-in selector and density derivative estimator code. Jose E. Chac\'on for the unconstrained pilot functional estimation and (A)MISE-optimal selectors for normal mixture densities code. }\references{ Bowman, A. \& Azzalini, A. (1997) \emph{Applied Smoothing Techniques for Data Analysis}. Oxford University Press. Oxford. Chac\'on, J.E. \& Duong, T. (2008) Multivariate plug-in bandwidth selection with unconstrained pilot matrices. \emph{Submitted.} Duong, T. (2004) \emph{Bandwidth Matrices for Multivariate Kernel Density Estimation.} Ph.D. Thesis. University of Western Australia. Duong, T. \& Hazelton, M.L. (2003) Plug-in bandwidth matrices for bivariate kernel density estimation. \emph{Journal of Nonparametric Statistics}, \bold{15}, 17-30. Duong, T. \& Hazelton, M.L. (2005) Cross-validation bandwidth matrices for multivariate kernel density estimation. \emph{Scandinavian Journal of Statistics}, \bold{32}, 485-506. Sain, S.R., Baggerly, K.A. \& Scott, D.W. (1994) Cross-validation of multivariate densities. \emph{Journal of the American Statistical Association}. \bold{82}, 1131-1146. Scott, D.W. (1992) \emph{Multivariate Density Estimation: Theory, Practice, and Visualization}. John Wiley \& Sons. New York. Silverman, B. (1986) \emph{Density Estimation for Statistics and Data Analysis}. Chapman \& Hall/CRC. London. Simonoff, J. S. (1996) \emph{Smoothing Methods in Statistics}. Springer-Verlag. New York. Wand, M.P. \& Jones, M.C. (1994) Multivariate plugin bandwidth selection. \emph{Computational Statistics}, \bold{9}, 97-116. Wand, M.P. \& Jones, M.C. (1995) \emph{Kernel Smoothing}. Chapman \& Hall/CRC. London.}\keyword{ package }\seealso{\code{\link[sm:sm-package]{sm}}, \code{\link[KernSmooth]{KernSmooth}}}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -