⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ks-package.rd

📁 r软件 另一款可以计算核估计的软件包 需安装r软件
💻 RD
字号:
\name{ks}\alias{ks}\docType{package}\title{ks}\description{  Kernel density estimation and kernel discriminant analysis for  data from 1- to 6-dimensions, with display functions.  }\details{  There are three main types of functions in this package:  (a) computing bandwidth  selectors, (b) computing kernel estimators and (c) displaying kernel estimators.  For the bandwidth matrix selectors, there are several varieties:\cr  (i) plug-in \code{\link{hpi}} (1-d);   \code{\link{Hpi}}, \code{\link{Hpi.diag}} (2- to 6-d) \cr  (ii) least squares (or unbiased) cross validation (LSCV or UCV)  \code{\link{Hlscv}}, \code{\link{Hlscv.diag}} (2- to 6-d) \cr  (iii) biased cross validation (BCV)   \code{\link{Hbcv}}, \code{\link{Hbcv.diag}} (2- to 6-d) \cr  (iv) smoothed cross validation (SCV) \code{\link{hscv}} (1-d);  \code{\link{Hscv}}, \code{\link{Hscv.diag}} (2- to 6-d) \cr  (v) normal scale selectors \code{\link{hmise.mixt}},  \code{\link{hamise.mixt}} (1-d); and \code{\link{Hmise.mixt}},  \code{\link{Hamise.mixt}} (2- to 6-d).      For kernel density estimation, the main function is  \code{\link{kde}}. For kernel discriminant analysis,  it's \code{\link{kda.kde}}.  For display, \code{plot} via (\code{\link{plot.kde}} and  \code{\link{plot.kda.kde}}) sends to a graphics window   the results of density estimation or discriminant analysis.    Binned kernel estimation is available for d = 1, 2, 3, 4.    For an overview of this package with 2-d density estimation, see   \code{vignette("kde")}. }\author{  Tarn Duong for most of the package.   Matt Wand for the binned estimation, univariate plug-in selector  and density derivative estimator code.  Jose E. Chac\'on for the unconstrained pilot  functional estimation and (A)MISE-optimal selectors for normal mixture  densities code.   }\references{  Bowman, A. \& Azzalini, A. (1997) \emph{Applied Smoothing Techniques    for Data Analysis}. Oxford University Press. Oxford.  Chac\'on, J.E. \& Duong, T. (2008) Multivariate plug-in bandwidth  selection with unconstrained pilot matrices. \emph{Submitted.}    Duong, T. (2004) \emph{Bandwidth Matrices for Multivariate Kernel Density     Estimation.} Ph.D. Thesis. University of Western Australia.    Duong, T. \& Hazelton, M.L. (2003) Plug-in bandwidth matrices for    bivariate kernel density estimation. \emph{Journal of Nonparametric  Statistics}, \bold{15}, 17-30.     Duong, T. \& Hazelton, M.L. (2005) Cross-validation bandwidth      matrices for multivariate kernel density	estimation. \emph{Scandinavian Journal of Statistics}, \bold{32},	485-506.   Sain, S.R., Baggerly, K.A. \& Scott, D.W. (1994)  Cross-validation of multivariate densities. \emph{Journal of the  American Statistical Association}. \bold{82}, 1131-1146.  Scott, D.W. (1992) \emph{Multivariate Density Estimation: Theory,    Practice, and Visualization}. John Wiley \& Sons. New York.  Silverman, B. (1986) \emph{Density Estimation for Statistics and  Data Analysis}. Chapman \& Hall/CRC. London.  Simonoff, J. S. (1996) \emph{Smoothing Methods in Statistics}.  Springer-Verlag. New York.  Wand, M.P. \& Jones, M.C. (1994) Multivariate plugin bandwidth    selection. \emph{Computational Statistics}, \bold{9}, 97-116.    Wand, M.P. \& Jones, M.C. (1995) \emph{Kernel Smoothing}. Chapman \&  Hall/CRC. London.}\keyword{ package }\seealso{\code{\link[sm:sm-package]{sm}}, \code{\link[KernSmooth]{KernSmooth}}}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -