📄 hbcv.rd
字号:
\name{Hbcv, Hbcv.diag}\alias{Hbcv}\alias{Hbcv.diag}\title{Biased cross-validation (BCV) bandwidth matrix selector for bivariate data}\description{BCV bandwidth matrix for bivariate data.}\usage{Hbcv(x, whichbcv=1, Hstart)Hbcv.diag(x, whichbcv=1, Hstart)}\arguments{ \item{x}{matrix of data values} \item{whichbcv}{1 = BCV1, 2 = BCV2. See details below} \item{Hstart}{initial bandwidth matrix, used in numerical optimisation} }\value{BCV bandwidth matrix. }\references{Sain, S.R, Baggerly, K.A. \& Scott, D.W. (1994) Cross-validation of multivariate densities. \emph{Journal of the American Statistical Association}. \bold{82}, 1131-1146. Duong, T. \& Hazelton, M.L. (2005) Cross-validation bandwidth matrices for multivariate kernel density estimation. \emph{Scandinavian Journal of Statistics}. \bold{32}, 485-506. }\details{ Use \code{Hbcv} for full bandwidth matrices and \code{Hbcv.diag} for diagonal bandwidth matrices. These selectors are only available for bivariate data. There are two types of BCV criteria considered here. They are known as BCV1 and BCV2, from Sain, Baggerly \& Scott (1994) and they only differ slightly. These BCV surfaces can have multiple minima and so it can be quite difficult to locate the most appropriate minimum. If \code{Hstart} is not given then it defaults to \code{k*var(x)} where k = \eqn{\left[\frac{4}{n(d+2)}\right]^{2/(d+4)}}{4/(n*(d + 2))^(2/(d+ 4))}, n = sample size, d = dimension of data.}\seealso{ \code{\link{Hlscv}}, \code{\link{Hscv}}}\note{ It can be difficult to find an appropriate (local) minimum of the BCV criterion. Some times, there can be no local minimum at all so there may be no finite BCV selector.}\examples{data(unicef)Hbcv(unicef)Hbcv.diag(unicef)}\keyword{ smooth }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -