⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hamise.mixt.rd

📁 r软件 另一款可以计算核估计的软件包 需安装r软件
💻 RD
字号:
\name{Hamise.mixt, Hmise.mixt, amise.mixt, ise.mixt, mise.mixt}\alias{Hmise.mixt}\alias{Hamise.mixt}\alias{hmise.mixt}\alias{hamise.mixt}\alias{ise.mixt}\alias{amise.mixt}\alias{mise.mixt}%\alias{amise.mixt.1d}%\alias{ise.mixt.1d}%\alias{mise.mixt.1d}\title{MISE- and AMISE-optimal bandwidth matrix selectors for normal  mixture densities}\description{  The global errors  ISE (Integrated Squared Error), MISE (Mean Integrated Squared Error) and the   AMISE (Asymptotic Mean Integrated Squared Error) for 1- to 6-dimensional  data.  Normal mixture densities have closed form expressions for the MISE and  AMISE. So in these cases, we can numerically minimise these criteria  to find MISE- and AMISE-optimal matrices.}\usage{Hamise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0)Hmise.mixt(mus, Sigmas, props, samp, Hstart, deriv.order=0)hamise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0)hmise.mixt(mus, sigmas, props, samp, hstart, deriv.order=0)ise.mixt(x, H, mus, Sigmas, props, h, sigmas, deriv.order=0)  mise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0)amise.mixt(H, mus, Sigmas, props, samp, h, sigmas, deriv.order=0)}\arguments{  \item{mus}{(stacked) matrix of mean vectors/vector of means}  \item{sigmas, Sigmas}{vector of standard deviations/(stacked) matrix of variance matrices}  \item{props}{vector of mixing proportions}  \item{samp}{sample size}  \item{hstart, Hstart}{initial bandwidth (matrix), used in numerical    optimisation}  \item{deriv.order}{derivative order}  \item{x}{matrix of data values}  \item{h, H}{bandwidth (matrix)}}\value{  -- Full MISE- or AMISE-optimal bandwidth matrix. Diagonal forms of  these matrices are not available.  -- ISE, MISE or AMISE value. \code{ise} is not  yet available for \code{deriv.order>0}.}\details{   For normal mixture densities, ISE, MISE and AMISE   have exact formulas for all dimensions. See Chac\'on, Duong \& Wand (2008).  If \code{Hstart} is not given then it defaults to  \code{k*var(x)} where k =  \eqn{\left[\frac{4}{n(d+2r+2)}\right]^{2/(d+2r+4)}}{4/(n*(d + 2r +	2))^(2/(d+ 2r+ 4))}, n = sample size, d = dimension of data, r=  derivative order. The default for \code{hstart} is the square root of  this expression.}\note{ISE is a random variable that depends on the data  \code{x}. MISE and AMISE are non-random and don't  depend on the data.}\references{Chac\'on J.E., Duong, T. \& Wand, M.P. (2008) \emph{Asymptotics for	general multivariate kernel density derivative	estimators}. In preparation.}\examples{## 1-dmus <- c(0, 2)sigmas <- c(1, sqrt(0.7))props <- c(1/2, 1/2)samp <- 1000h <- hmise.mixt(mus, sigmas, props, samp, deriv.order=0)x <- rnorm.mixt(n=samp, mus=mus, sigmas=sigmas, props=props)ise.mixt(x=x, h=h, mus=mus, sigmas=sigmas, props=props)mise.mixt(h=h, mus=mus, sigmas=sigmas, props=props, samp=samp)## 2-d mus <- rbind(c(0,0), c(2,2))Sigma <- matrix(c(1, 0.7, 0.7, 1), nr=2, nc=2) Sigmas <- rbind(Sigma, Sigma)props <- c(1/2, 1/2)samp <- 100H <- Hamise.mixt(mus, Sigmas, props, samp, deriv.order=2)x <- rmvnorm.mixt(n=samp, mus=mus, Sigmas=Sigmas, props=props)amise.mixt(H=H, mus=mus, Sigmas=Sigmas, props=props, samp=samp, deriv.order=2)}\keyword{smooth}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -