⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hpi.rd

📁 r软件 另一款可以计算核估计的软件包 需安装r软件
💻 RD
字号:
\name{Hpi, Hpi.diag, hpi}\alias{Hpi}\alias{Hpi.diag}\alias{hpi}\title{Plug-in bandwidth selector}\description{  Plug-in bandwidth for for 1- to 6-dimensional data.}\usage{Hpi(x, nstage=2, pilot="samse", pre="sphere", Hstart,    binned=FALSE, bgridsize, amise=FALSE)Hpi.diag(x, nstage=2, pilot="amse", pre="scale", Hstart,    binned=FALSE, bgridsize)hpi(x, nstage=2, binned=TRUE, bgridsize)}\arguments{  \item{x}{vector or matrix of data values}  \item{nstage}{number of stages in the plug-in bandwidth selector (1 or 2)}  \item{pilot}{\code{"amse"} = AMSE pilot bandwidths,    \code{"samse"} = single SAMSE pilot bandwidth,	\code{"unconstr"} = unconstrained pilot bandwidth matrix}  \item{pre}{\code{"scale"} = pre-scaling, \code{"sphere"} = pre-sphering}  \item{Hstart}{initial bandwidth matrix, used in numerical    optimisation}  \item{binned}{flag for binned kernel estimation}  \item{bgridsize}{vector of binning grid sizes - required only if binned=TRUE}  \item{amise}{flag for returning estimated AMISE}  %\item{...}{other parameters as for \code{dpik} from \pkg{KernSmooth}}}\value{Plug-in bandwidth. If \code{amise=TRUE} then the plug-inbandwidth plus the estimated AMISE is returned in a list.}\details{ \code{hpi} is the univariate plug-in   selector of Sheather \& Jones (1991). \code{Hpi} is a  multivariate generalisation of this.  Use \code{Hpi} for full bandwidth matrices and \code{Hpi.diag}  for diagonal bandwidth matrices.  For AMSE pilot bandwidths, see Wand \& Jones (1994). For  SAMSE pilot bandwidths, see Duong \& Hazelton (2003).  The latter is a  modification of the former, in order to remove any possible problems  with non-positive definiteness. Unconstrained pilot bandwidths are  available for d = 1, ..., 5 (but are extremely computationally  intensive for the latter dimensions). See Chac\'on \& Duong (2008).  For d = 1, the selector \code{hpi} is exactly the same as  \pkg{KernSmooth}'s \code{dpik}. This is always computed as binned  estimator. For d = 2, 3, 4 and \code{binned=TRUE},   estimates are computed over a binning grid defined   by \code{bgridsize}. Otherwise it's computed exactly.    For details on the pre-transformations in \code{pre}, see  \code{\link{pre.sphere}} and \code{\link{pre.scale}}.  If \code{Hstart} is not given then it defaults to  \code{k*var(x)} where k =  \eqn{\left[\frac{4}{n(d+2)}\right]^{2/(d+4)}}{4/(n*(d + 2))^(2/(d+    4))}, n = sample size, d = dimension of data.}\references{  Chac\'on, J.E. \& Duong, T. (2008) Multivariate plug-in bandwidth  selection with unconstrained pilot matrices. \emph{Submitted.}    Duong, T. \& Hazelton, M.L. (2003) Plug-in bandwidth matrices for  bivariate kernel density estimation. \emph{Journal of Nonparametric	Statistics}, \bold{15}, 17-30.    Sheather, S.J. \& Jones, M.C. (1991) A reliable data-based bandwidth selection  method for kernel density estimatio. \emph{Journal of the Royal	Statistical Society, Series B}, \bold{53}, 683-690.    Wand, M.P. \& Jones, M.C. (1994) Multivariate plugin bandwidth  selection.  \emph{Computational Statistics}, \bold{9}, 97-116.}  \examples{data(unicef)Hpi(unicef)Hpi(unicef, pilot="unconstr")Hpi.diag(unicef, binned=TRUE)hpi(unicef[,1])}\keyword{ smooth }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -