📄 hpi.rd
字号:
\name{Hpi, Hpi.diag, hpi}\alias{Hpi}\alias{Hpi.diag}\alias{hpi}\title{Plug-in bandwidth selector}\description{ Plug-in bandwidth for for 1- to 6-dimensional data.}\usage{Hpi(x, nstage=2, pilot="samse", pre="sphere", Hstart, binned=FALSE, bgridsize, amise=FALSE)Hpi.diag(x, nstage=2, pilot="amse", pre="scale", Hstart, binned=FALSE, bgridsize)hpi(x, nstage=2, binned=TRUE, bgridsize)}\arguments{ \item{x}{vector or matrix of data values} \item{nstage}{number of stages in the plug-in bandwidth selector (1 or 2)} \item{pilot}{\code{"amse"} = AMSE pilot bandwidths, \code{"samse"} = single SAMSE pilot bandwidth, \code{"unconstr"} = unconstrained pilot bandwidth matrix} \item{pre}{\code{"scale"} = pre-scaling, \code{"sphere"} = pre-sphering} \item{Hstart}{initial bandwidth matrix, used in numerical optimisation} \item{binned}{flag for binned kernel estimation} \item{bgridsize}{vector of binning grid sizes - required only if binned=TRUE} \item{amise}{flag for returning estimated AMISE} %\item{...}{other parameters as for \code{dpik} from \pkg{KernSmooth}}}\value{Plug-in bandwidth. If \code{amise=TRUE} then the plug-inbandwidth plus the estimated AMISE is returned in a list.}\details{ \code{hpi} is the univariate plug-in selector of Sheather \& Jones (1991). \code{Hpi} is a multivariate generalisation of this. Use \code{Hpi} for full bandwidth matrices and \code{Hpi.diag} for diagonal bandwidth matrices. For AMSE pilot bandwidths, see Wand \& Jones (1994). For SAMSE pilot bandwidths, see Duong \& Hazelton (2003). The latter is a modification of the former, in order to remove any possible problems with non-positive definiteness. Unconstrained pilot bandwidths are available for d = 1, ..., 5 (but are extremely computationally intensive for the latter dimensions). See Chac\'on \& Duong (2008). For d = 1, the selector \code{hpi} is exactly the same as \pkg{KernSmooth}'s \code{dpik}. This is always computed as binned estimator. For d = 2, 3, 4 and \code{binned=TRUE}, estimates are computed over a binning grid defined by \code{bgridsize}. Otherwise it's computed exactly. For details on the pre-transformations in \code{pre}, see \code{\link{pre.sphere}} and \code{\link{pre.scale}}. If \code{Hstart} is not given then it defaults to \code{k*var(x)} where k = \eqn{\left[\frac{4}{n(d+2)}\right]^{2/(d+4)}}{4/(n*(d + 2))^(2/(d+ 4))}, n = sample size, d = dimension of data.}\references{ Chac\'on, J.E. \& Duong, T. (2008) Multivariate plug-in bandwidth selection with unconstrained pilot matrices. \emph{Submitted.} Duong, T. \& Hazelton, M.L. (2003) Plug-in bandwidth matrices for bivariate kernel density estimation. \emph{Journal of Nonparametric Statistics}, \bold{15}, 17-30. Sheather, S.J. \& Jones, M.C. (1991) A reliable data-based bandwidth selection method for kernel density estimatio. \emph{Journal of the Royal Statistical Society, Series B}, \bold{53}, 683-690. Wand, M.P. \& Jones, M.C. (1994) Multivariate plugin bandwidth selection. \emph{Computational Statistics}, \bold{9}, 97-116.} \examples{data(unicef)Hpi(unicef)Hpi(unicef, pilot="unconstr")Hpi.diag(unicef, binned=TRUE)hpi(unicef[,1])}\keyword{ smooth }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -