📄 plot.kde.rd
字号:
\name{plot.kde}\alias{plot.kde}\title{Kernel density estimate plot for 1- to 3-dimensional data}\description{ Kernel density estimate plot for 1- to 3-dimensional data.}\synopsis{\method{plot}{kde}(x, drawpoints=FALSE, ...)}\usage{## univariate\method{plot}{kde}(x, xlab, ylab="Density function", add=FALSE, drawpoints=FALSE, ptcol="blue", col="black", jitter=TRUE, ...)## bivariate\method{plot}{kde}(x, display="slice", cont=c(25,50,75), abs.cont, xlab, ylab, zlab="Density function", add=FALSE, drawpoints=FALSE, drawlabels=TRUE, theta=-30, phi=40, d=4, ptcol="blue", col="black", ...)## trivariate\method{plot}{kde}(x, cont=c(25,50,75), abs.cont, colors,add=FALSE, drawpoints=FALSE, alpha, alphavec, xlab, ylab, zlab, size=3, ptcol="blue", ...)}\arguments{ \item{x}{an object of class \code{kde} (output from \code{\link{kde}} function)} \item{display}{type of display, "slice" for contour plot, "persp" for perspective plot, "image" for image plot, "filled" for filled contyour plot (2-d plot)} \item{cont}{vector of percentages for contour level curves} \item{abs.cont}{vector of absolute density estimate heights for contour level curves} \item{ptcol}{plotting colour for data points} \item{col}{plotting colour for density estimate (1-d, 2-d plot)} \item{colors}{vector of colours for each contour (3-d plot)} \item{jitter}{if TRUE then jitter rug plot (1-d plot)} \item{xlab,ylab,zlab}{axes labels} \item{add}{if TRUE then add to current plot} \item{theta,phi,d}{graphics parameters for perspective plots (2-d plot)} \item{drawpoints}{if TRUE then draw data points on density estimate} \item{drawlabels}{if TRUE then draw contour labels (2-d plot)} \item{alpha}{transparency value of plotting symbol (3-d plot)} \item{alphavec}{vector of transparency values for contours (3-d plot)} \item{size}{size of plotting symbol (3-d plot)} \item{...}{other graphics parameters}} \value{ Plot of 1-d and 2-d kernel density estimates are sent to graphics window. Plot for 3-d is generated by the \code{misc3d} and \code{rgl} libraries and is sent to RGL window.}\references{ Bowman, A.W. & Azzalini, A. (1997) \emph{Applied Smoothing Techniques for Data Analysis}. Clarendon Press. Oxford. Simonoff, J. S., (1996) \emph{Smoothing Methods in Statistics}. Springer-Verlag. New York.}\details{ -- The 1-d plot is a standard plot of a 1-d curve. If \code{drawpoints=TRUE} then a rug plot is added. -- There are three types of plotting displays for 2-d data available, controlled by the \code{display} parameter. If \code{display="slice"} then a slice/contour plot is generated using \code{contour}. The default contours are at 25\%, 50\%, 75\% or \code{cont=c(25,50,75)} which are upper percentages of highest density regions. See below for alternative contour levels. If \code{display="persp"} then a perspective/wire-frame plot is generated. The default z-axis limits \code{zlim} are the default from the usual \code{persp} command. If \code{display="image"} then an image plot is generated. Default colours are the default from the usual \code{image} command. -- For 3-dimensional data, the interactive plot is a series of nested 3-d contours. The default contours are \code{cont=c(25,50,75)}. See below for alternative contour levels. The default \code{colors} are \code{heat.colors} and the default opacity \code{alphavec} ranges from 0.1 to 0.5. -- To specify contours, either one of \code{cont} or \code{abs.cont} is required. \code{cont} specifies upper percentages which correspond to highest density regions. If \code{abs.cont=NULL} then a \code{pretty} set of contours is drawn. If \code{abs.cont} is set to particular values, then contours at these levels are drawn. This third option is useful for plotting multiple density estimates with common contour levels. See \code{\link{contourLevels}} for details on computing contour levels for \code{kde} objects. } \seealso{\code{\link{kde}}}\examples{## univariate examplex <- rnorm.mixt(n=100, mus=1, sigmas=1, props=1)fhat <- kde(x=x, h=hpi(x)) plot(fhat)## bivariate exampledata(unicef)H.scv <- Hscv(x=unicef)fhat <- kde(x=unicef, H=H.scv)plot(fhat)plot(fhat, drawpoints=TRUE, drawlabels=FALSE, col=3, lwd=2)plot(fhat, display="persp", border=NA, col="grey96", shade=0.75)plot(fhat, display="image", col=rev(heat.colors(100)))plot(fhat, display="filled")## pair of densities with same absolute contour levelsx <- rmvnorm.mixt(n=100, mus=c(0,0), Sigmas=diag(2), props=1)Hx <- Hpi(x)fhatx <- kde(x=x, H=Hx, xmin=c(-4,-4), xmax=c(4,4)) y <- rmvnorm.mixt(n=100, mus=c(0.5,0.5), Sigmas=0.5*diag(2), props=1)Hy <- Hpi(y)fhaty <- kde(x=y, H=Hy, xmin=c(-4,-4), xmax=c(4,4))lev <- contourLevels(fhatx, prob=c(0.25, 0.5, 0.75))plot(fhatx, abs.cont=lev)plot(fhaty, abs.cont=lev, col=3, add=TRUE) ## large sample - 10000 sample from bivariate standard normal x <- rmvnorm.mixt(10000, c(0,0), diag(2)) H.pi <- Hpi.diag(x, binned=TRUE)fhat <- kde(x, H=H.pi, binned=TRUE) plot(fhat, drawpoints=FALSE, cont=seq(10,90, by=20))## trivariate examplemus <- rbind(c(0,0,0), c(-1,1,1))Sigma <- matrix(c(1, 0.7, 0.7, 0.7, 1, 0.7, 0.7, 0.7, 1), nr=3, nc=3) Sigmas <- rbind(Sigma, Sigma)props <- c(1/2, 1/2)x <- rmvnorm.mixt(n=100, mus=mus, Sigmas=Sigmas, props=props)H.pi <- Hpi(x, pilot="samse")fhat <- kde(x, H=H.pi) plot(fhat)plot(fhat, axes=FALSE, box=FALSE, drawpoints=TRUE); axes3d(c('x','y','z'))}\keyword{hplot}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -