📄 dmvt.mixt.rd
字号:
\name{dmvt.mixt, rmvt.mixt}\alias{rmvt.mixt}\alias{dmvt.mixt}\title{Multivariate t mixture distribution}\description{Random generation and density values from multivariate t mixture distribution.}\usage{rmvt.mixt(n=100, mus=c(0,0), Sigmas=diag(2), dfs=7, props=1)dmvt.mixt(x, mus, Sigmas, dfs, props)}\arguments{ \item{n}{number of random variates} \item{x}{matrix of quantiles} \item{mus}{(stacked) matrix of location vectors} \item{Sigmas}{(stacked) matrix of dispersion matrices} \item{dfs}{vector of degrees of freedom} \item{props}{vector of mixing proportions} } \value{Multivariate t mixture random vectors and density values.}\details{ \code{rmvt.mixt} and \code{dmvt.mixt} are based on the \code{rmvt} and \code{dmvt} functions from the \code{mvtnorm} library. The formula for a d-variate t density with location vector \eqn{\bold{\mu}}{mu}, dispersion matrix \eqn{\bold{\Sigma}}{Sigma} and df degrees of freedom is \deqn{\frac{\Gamma((df+d)/2)}{(df\pi)^{d/2} \Gamma(df/2) |\bold{\Sigma}^{1/2}|}\left[ 1 + \frac{1}{df} (\bold{x} - \bold{\mu})^T \bold{\Sigma}^{-1}(\bold{x} - \bold{\mu}) \right]^{-(d+df)/2}.}{gamma((df+d)/2) / ((df*pi)^(d/2) * gamma(df/2)* det(Sigma)^(1/2) * (1 + 1/df * (x-mu)^T * Sigma^(-1) (x-mu))^(-(d+df)/2).} }\seealso{\code{\link{rmvnorm.mixt}}, \code{\link{dmvnorm.mixt}}}\examples{mus <- rbind(c(-3/2,0), c(3/2,0))Sigmas <- rbind(diag(c(1/16, 1)), rbind(c(1/16, 1/18), c(1/18, 1/16)))props <- c(2/3, 1/3)dfs <- c(7,3)x <- rmvt.mixt(1000, mus, Sigmas, dfs, props)dens <- dmvt.mixt(x, mus, Sigmas, dfs, props)}\keyword{ distribution }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -