⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kda.kde.rd

📁 r软件 另一款可以计算核估计的软件包 需安装r软件
💻 RD
字号:
\name{kda.kde}\alias{kda.kde}\title{Kernel density estimate for kernel discriminant analysis for multivariate data}\description{  Kernel density estimate for kernel discriminant analysis for 1- to 6-dimensional data}\usage{kda.kde(x, x.group, Hs, hs, prior.prob=NULL, gridsize, xmin, xmax,        supp=3.7, eval.points=NULL, binned=FALSE, bgridsize)}\arguments{  \item{x}{matrix of training data values}  \item{x.group}{vector of group labels for training data}  \item{Hs}{(stacked) matrix of bandwidth matrices}  \item{hs}{vector of scalar bandwidths}  \item{prior.prob}{vector of prior probabilities}  \item{gridsize}{vector of number of grid points}  \item{xmin}{vector of minimum values for grid}  \item{xmax}{vector of maximum values for grid}  \item{supp}{effective support for standard normal is [\code{-supp, supp}]}  \item{eval.points}{points at which density estimate is evaluated}  \item{binned}{flag for binned kernel estimation}  \item{bgridsize}{vector of binning grid sizes - only required if	\code{binned=TRUE}}}  \value{  The kernel density estimate for kernel discriminant analysis is  based on \code{\link{kde}}, one density estimate for each group.   The result from \code{kda.kde} is a density estimate  for discriminant analysis is an object of class \code{kda.kde} which is a  list with 6 fields  \item{x}{data points - same as input}  \item{x.group}{group labels - same as input}  \item{eval.points}{points that density estimate is evaluated at}  \item{estimate}{density estimate at \code{eval.points}}    \item{prior.prob}{prior probabilities}  \item{H}{bandwidth matrices (>1-d only)  or }   \item{h}{bandwidths (1-d only)}}\details{  For d = 1, 2, 3, 4,   and if \code{eval.points} is not specified, then the  density estimate is computed over a grid   defined by \code{gridsize} (if \code{binned=FALSE}) or  by \code{bgridsize} (if \code{binned=TRUE}).  For d = 1, 2, 3, 4,   and if \code{eval.points} is specified, then the  density estimate is computed is computed exactly at \code{eval.points}.    For d > 4, the kernel density estimate is computed exactly   and \code{eval.points} must be specified.  If you have prior probabilities then set \code{prior.prob} to these.  Otherwise \code{prior.prob=NULL} is the default i.e. use the sample  proportions as estimates of the prior probabilities.  The default \code{xmin} is \code{min(x) - Hmax*supp} and \code{xmax}  is \code{max(x) + Hmax*supp}  where \code{Hmax} is the maximim of the  diagonal elements of \code{H}. }\references{ Wand, M.P. \& Jones, M.C. (1995) \emph{Kernel Smoothing}.  Chapman \& Hall. London. } \seealso{\code{\link{plot.kda.kde}}}\examples{### See examples in ? plot.kda.kde}\keyword{smooth}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -