📄 kda.kde.rd
字号:
\name{kda.kde}\alias{kda.kde}\title{Kernel density estimate for kernel discriminant analysis for multivariate data}\description{ Kernel density estimate for kernel discriminant analysis for 1- to 6-dimensional data}\usage{kda.kde(x, x.group, Hs, hs, prior.prob=NULL, gridsize, xmin, xmax, supp=3.7, eval.points=NULL, binned=FALSE, bgridsize)}\arguments{ \item{x}{matrix of training data values} \item{x.group}{vector of group labels for training data} \item{Hs}{(stacked) matrix of bandwidth matrices} \item{hs}{vector of scalar bandwidths} \item{prior.prob}{vector of prior probabilities} \item{gridsize}{vector of number of grid points} \item{xmin}{vector of minimum values for grid} \item{xmax}{vector of maximum values for grid} \item{supp}{effective support for standard normal is [\code{-supp, supp}]} \item{eval.points}{points at which density estimate is evaluated} \item{binned}{flag for binned kernel estimation} \item{bgridsize}{vector of binning grid sizes - only required if \code{binned=TRUE}}} \value{ The kernel density estimate for kernel discriminant analysis is based on \code{\link{kde}}, one density estimate for each group. The result from \code{kda.kde} is a density estimate for discriminant analysis is an object of class \code{kda.kde} which is a list with 6 fields \item{x}{data points - same as input} \item{x.group}{group labels - same as input} \item{eval.points}{points that density estimate is evaluated at} \item{estimate}{density estimate at \code{eval.points}} \item{prior.prob}{prior probabilities} \item{H}{bandwidth matrices (>1-d only) or } \item{h}{bandwidths (1-d only)}}\details{ For d = 1, 2, 3, 4, and if \code{eval.points} is not specified, then the density estimate is computed over a grid defined by \code{gridsize} (if \code{binned=FALSE}) or by \code{bgridsize} (if \code{binned=TRUE}). For d = 1, 2, 3, 4, and if \code{eval.points} is specified, then the density estimate is computed is computed exactly at \code{eval.points}. For d > 4, the kernel density estimate is computed exactly and \code{eval.points} must be specified. If you have prior probabilities then set \code{prior.prob} to these. Otherwise \code{prior.prob=NULL} is the default i.e. use the sample proportions as estimates of the prior probabilities. The default \code{xmin} is \code{min(x) - Hmax*supp} and \code{xmax} is \code{max(x) + Hmax*supp} where \code{Hmax} is the maximim of the diagonal elements of \code{H}. }\references{ Wand, M.P. \& Jones, M.C. (1995) \emph{Kernel Smoothing}. Chapman \& Hall. London. } \seealso{\code{\link{plot.kda.kde}}}\examples{### See examples in ? plot.kda.kde}\keyword{smooth}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -