⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 astro.c

📁 PHP v6.0 For Linux 运行环境:Win9X/ WinME/ WinNT/ Win2K/ WinXP
💻 C
字号:
/*   +----------------------------------------------------------------------+   | PHP Version 5                                                        |   +----------------------------------------------------------------------+   | Copyright (c) 1997-2006 The PHP Group                                |   +----------------------------------------------------------------------+   | This source file is subject to version 3.01 of the PHP license,      |   | that is bundled with this package in the file LICENSE, and is        |   | available through the world-wide-web at the following url:           |   | http://www.php.net/license/3_01.txt                                  |   | If you did not receive a copy of the PHP license and are unable to   |   | obtain it through the world-wide-web, please send a note to          |   | license@php.net so we can mail you a copy immediately.               |   +----------------------------------------------------------------------+   | Algorithms are taken from a public domain source by Paul             |   | Schlyter, who wrote this in December 1992                            |   +----------------------------------------------------------------------+   | Authors: Derick Rethans <derick@derickrethans.nl>                    |   +----------------------------------------------------------------------+ *//* $Id: astro.c,v 1.3 2006/01/04 12:57:03 derick Exp $ */#include <stdio.h>#include <math.h>#include "timelib.h"#define days_since_2000_Jan_0(y,m,d) \	(367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)#ifndef PI #define PI        3.1415926535897932384#endif#define RADEG     ( 180.0 / PI )#define DEGRAD    ( PI / 180.0 )/* The trigonometric functions in degrees */#define sind(x)  sin((x)*DEGRAD)#define cosd(x)  cos((x)*DEGRAD)#define tand(x)  tan((x)*DEGRAD)#define atand(x)    (RADEG*atan(x))#define asind(x)    (RADEG*asin(x))#define acosd(x)    (RADEG*acos(x))#define atan2d(y,x) (RADEG*atan2(y,x))/* Following are some macros around the "workhorse" function __daylen__ *//* They mainly fill in the desired values for the reference altitude    *//* below the horizon, and also selects whether this altitude should     *//* refer to the Sun's center or its upper limb.                         */#include "astro.h"/******************************************************************//* This function reduces any angle to within the first revolution *//* by subtracting or adding even multiples of 360.0 until the     *//* result is >= 0.0 and < 360.0                                   *//******************************************************************/#define INV360    (1.0 / 360.0)/*****************************************//* Reduce angle to within 0..360 degrees *//*****************************************/static double astro_revolution(double x){	return (x - 360.0 * floor(x * INV360));}/*********************************************//* Reduce angle to within +180..+180 degrees *//*********************************************/static double astro_rev180( double x ){	return (x - 360.0 * floor(x * INV360 + 0.5));}/*******************************************************************//* This function computes GMST0, the Greenwich Mean Sidereal Time  *//* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at  *//* 0h UT).  GMST is then the sidereal time at Greenwich at any     *//* time of the day.  I've generalized GMST0 as well, and define it *//* as:  GMST0 = GMST - UT  --  this allows GMST0 to be computed at *//* other times than 0h UT as well.  While this sounds somewhat     *//* contradictory, it is very practical:  instead of computing      *//* GMST like:                                                      *//*                                                                 *//*  GMST = (GMST0) + UT * (366.2422/365.2422)                      *//*                                                                 *//* where (GMST0) is the GMST last time UT was 0 hours, one simply  *//* computes:                                                       *//*                                                                 *//*  GMST = GMST0 + UT                                              *//*                                                                 *//* where GMST0 is the GMST "at 0h UT" but at the current moment!   *//* Defined in this way, GMST0 will increase with about 4 min a     *//* day.  It also happens that GMST0 (in degrees, 1 hr = 15 degr)   *//* is equal to the Sun's mean longitude plus/minus 180 degrees!    *//* (if we neglect aberration, which amounts to 20 seconds of arc   *//* or 1.33 seconds of time)                                        *//*                                                                 *//*******************************************************************/static double astro_GMST0(double d){	double sidtim0;	/* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr  */	/* L = M + w, as defined in sunpos().  Since I'm too lazy to */	/* add these numbers, I'll let the C compiler do it for me.  */	/* Any decent C compiler will add the constants at compile   */	/* time, imposing no runtime or code overhead.               */	sidtim0 = astro_revolution((180.0 + 356.0470 + 282.9404) + (0.9856002585 + 4.70935E-5) * d);	return sidtim0;} /* This function computes the Sun's position at any instant *//******************************************************//* Computes the Sun's ecliptic longitude and distance *//* at an instant given in d, number of days since     *//* 2000 Jan 0.0.  The Sun's ecliptic latitude is not  *//* computed, since it's always very near 0.           *//******************************************************/static void astro_sunpos(double d, double *lon, double *r){	double M,         /* Mean anomaly of the Sun */	       w,         /* Mean longitude of perihelion */	                  /* Note: Sun's mean longitude = M + w */	       e,         /* Eccentricity of Earth's orbit */	       E,         /* Eccentric anomaly */	       x, y,      /* x, y coordinates in orbit */	       v;         /* True anomaly */	/* Compute mean elements */	M = astro_revolution(356.0470 + 0.9856002585 * d);	w = 282.9404 + 4.70935E-5 * d;	e = 0.016709 - 1.151E-9 * d;	/* Compute true longitude and radius vector */	E = M + e * RADEG * sind(M) * (1.0 + e * cosd(M));	x = cosd(E) - e;	y = sqrt(1.0 - e*e) * sind(E);	*r = sqrt(x*x + y*y);              /* Solar distance */	v = atan2d(y, x);                  /* True anomaly */	*lon = v + w;                        /* True solar longitude */	if (*lon >= 360.0) {		*lon -= 360.0;                   /* Make it 0..360 degrees */	}}static void astro_sun_RA_dec(double d, double *RA, double *dec, double *r){	double lon, obl_ecl, x, y, z;	/* Compute Sun's ecliptical coordinates */	astro_sunpos(d, &lon, r);	/* Compute ecliptic rectangular coordinates (z=0) */	x = *r * cosd(lon);	y = *r * sind(lon);	/* Compute obliquity of ecliptic (inclination of Earth's axis) */	obl_ecl = 23.4393 - 3.563E-7 * d;	/* Convert to equatorial rectangular coordinates - x is unchanged */	z = y * sind(obl_ecl);	y = y * cosd(obl_ecl);	/* Convert to spherical coordinates */	*RA = atan2d(y, x);	*dec = atan2d(z, sqrt(x*x + y*y));}/** * Note: timestamp = unixtimestamp (NEEDS to be 00:00:00 UT) *       Eastern longitude positive, Western longitude negative        *       Northern latitude positive, Southern latitude negative        *       The longitude value IS critical in this function!             *       altit = the altitude which the Sun should cross               *               Set to -35/60 degrees for rise/set, -6 degrees        *               for civil, -12 degrees for nautical and -18           *               degrees for astronomical twilight.                    *         upper_limb: non-zero -> upper limb, zero -> center          *               Set to non-zero (e.g. 1) when computing rise/set      *               times, and to zero when computing start/end of        *               twilight.                                             *        *rise = where to store the rise time                         *        *set  = where to store the set  time                         *                Both times are relative to the specified altitude,   *                and thus this function can be used to compute        *                various twilight times, as well as rise/set times    * Return value:  0 = sun rises/sets this day, times stored at         *                    *trise and *tset.                                *               +1 = sun above the specified "horizon" 24 hours.      *                    *trise set to time when the sun is at south,     *                    minus 12 hours while *tset is set to the south   *                    time plus 12 hours. "Day" length = 24 hours      *               -1 = sun is below the specified "horizon" 24 hours    *                    "Day" length = 0 hours, *trise and *tset are     *                    both set to the time when the sun is at south.   *                                                                     */int timelib_astro_rise_set_altitude(timelib_time *t_loc, double lon, double lat, double altit, int upper_limb, double *h_rise, double *h_set, timelib_sll *ts_rise, timelib_sll *ts_set, timelib_sll *ts_transit){	double  d,  /* Days since 2000 Jan 0.0 (negative before) */	sr,         /* Solar distance, astronomical units */	sRA,        /* Sun's Right Ascension */	sdec,       /* Sun's declination */	sradius,    /* Sun's apparent radius */	t,          /* Diurnal arc */	tsouth,     /* Time when Sun is at south */	sidtime;    /* Local sidereal time */	timelib_time *t_utc;	timelib_sll   timestamp, old_sse;	int rc = 0; /* Return cde from function - usually 0 */	/* Normalize time */	old_sse = t_loc->sse;	t_loc->h = 12;	t_loc->i = t_loc->s = 0;	timelib_update_ts(t_loc, NULL);	/* Calculate TS belonging to UTC 00:00 of the current day */	t_utc = timelib_time_ctor();	t_utc->y = t_loc->y;	t_utc->m = t_loc->m;	t_utc->d = t_loc->d;	t_utc->h = t_utc->i = t_utc->s = 0;	timelib_update_ts(t_utc, NULL);	/* Compute d of 12h local mean solar time */	timestamp = t_loc->sse;	d = timelib_ts_to_juliandate(timestamp) - lon/360.0;	/* Compute local sidereal time of this moment */	sidtime = astro_revolution(astro_GMST0(d) + 180.0 + lon);	/* Compute Sun's RA + Decl at this moment */	astro_sun_RA_dec( d, &sRA, &sdec, &sr );	/* Compute time when Sun is at south - in hours UT */	tsouth = 12.0 - astro_rev180(sidtime - sRA) / 15.0;	/* Compute the Sun's apparent radius, degrees */	sradius = 0.2666 / sr;	/* Do correction to upper limb, if necessary */	if (upper_limb) {		altit -= sradius;	}	/* Compute the diurnal arc that the Sun traverses to reach */	/* the specified altitude altit: */	{		double cost;		cost = (sind(altit) - sind(lat) * sind(sdec)) / (cosd(lat) * cosd(sdec));		*ts_transit = t_utc->sse + (tsouth * 3600);		if (cost >= 1.0) {			rc = -1;			t = 0.0;       /* Sun always below altit */			*ts_rise = *ts_set = t_utc->sse + (tsouth * 3600);		} else if (cost <= -1.0) {			rc = +1;			t = 12.0;      /* Sun always above altit */			*ts_rise = t_loc->sse - (12 * 3600);			*ts_set  = t_loc->sse + (12 * 3600);		} else {			t = acosd(cost) / 15.0;   /* The diurnal arc, hours */			/* Store rise and set times - as Unix Timestamp */			*ts_rise = ((tsouth - t) * 3600) + t_utc->sse;			*ts_set  = ((tsouth + t) * 3600) + t_utc->sse;			*h_rise = (tsouth - t);			*h_set  = (tsouth + t);		}	}	/* Kill temporary time and restore original sse */	timelib_time_dtor(t_utc);	t_loc->sse = old_sse;	return rc;}double timelib_ts_to_juliandate(timelib_sll ts){	double tmp;	tmp = ts;	tmp /= 86400;	tmp += 2440587.5;	tmp -= 2451543;	return tmp;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -