📄 pcre.txt
字号:
PCRE library, approximately doubling its size. Only the general cate- gory properties such as Lu and Nd are supported. Details are given in the pcrepattern documentation.CODE VALUE OF NEWLINE By default, PCRE treats character 10 (linefeed) as the newline charac- ter. This is the normal newline character on Unix-like systems. You can compile PCRE to use character 13 (carriage return) instead by adding --enable-newline-is-cr to the configure command. For completeness there is also a --enable- newline-is-lf option, which explicitly specifies linefeed as the new- line character.BUILDING SHARED AND STATIC LIBRARIES The PCRE building process uses libtool to build both shared and static Unix libraries by default. You can suppress one of these by adding one of --disable-shared --disable-static to the configure command, as required.POSIX MALLOC USAGE When PCRE is called through the POSIX interface (see the pcreposix doc- umentation), additional working storage is required for holding the pointers to capturing substrings, because PCRE requires three integers per substring, whereas the POSIX interface provides only two. If the number of expected substrings is small, the wrapper function uses space on the stack, because this is faster than using malloc() for each call. The default threshold above which the stack is no longer used is 10; it can be changed by adding a setting such as --with-posix-malloc-threshold=20 to the configure command.LIMITING PCRE RESOURCE USAGE Internally, PCRE has a function called match(), which it calls repeat- edly (possibly recursively) when matching a pattern with the pcre_exec() function. By controlling the maximum number of times this function may be called during a single matching operation, a limit can be placed on the resources used by a single call to pcre_exec(). The limit can be changed at run time, as described in the pcreapi documen- tation. The default is 10 million, but this can be changed by adding a setting such as --with-match-limit=500000 to the configure command. This setting has no effect on the pcre_dfa_exec() matching function.HANDLING VERY LARGE PATTERNS Within a compiled pattern, offset values are used to point from one part to another (for example, from an opening parenthesis to an alter- nation metacharacter). By default, two-byte values are used for these offsets, leading to a maximum size for a compiled pattern of around 64K. This is sufficient to handle all but the most gigantic patterns. Nevertheless, some people do want to process enormous patterns, so it is possible to compile PCRE to use three-byte or four-byte offsets by adding a setting such as --with-link-size=3 to the configure command. The value given must be 2, 3, or 4. Using longer offsets slows down the operation of PCRE because it has to load additional bytes when handling them. If you build PCRE with an increased link size, test 2 (and test 5 if you are using UTF-8) will fail. Part of the output of these tests is a representation of the compiled pattern, and this changes with the link size.AVOIDING EXCESSIVE STACK USAGE When matching with the pcre_exec() function, PCRE implements backtrack- ing by making recursive calls to an internal function called match(). In environments where the size of the stack is limited, this can se- verely limit PCRE's operation. (The Unix environment does not usually suffer from this problem.) An alternative approach that uses memory from the heap to remember data, instead of using recursive function calls, has been implemented to work round this problem. If you want to build a version of PCRE that works this way, add --disable-stack-for-recursion to the configure command. With this configuration, PCRE will use the pcre_stack_malloc and pcre_stack_free variables to call memory manage- ment functions. Separate functions are provided because the usage is very predictable: the block sizes requested are always the same, and the blocks are always freed in reverse order. A calling program might be able to implement optimized functions that perform better than the standard malloc() and free() functions. PCRE runs noticeably more slowly when built in this way. This option affects only the pcre_exec() function; it is not relevant for the the pcre_dfa_exec() function.USING EBCDIC CODE PCRE assumes by default that it will run in an environment where the character code is ASCII (or Unicode, which is a superset of ASCII). PCRE can, however, be compiled to run in an EBCDIC environment by adding --enable-ebcdic to the configure command.Last updated: 15 August 2005Copyright (c) 1997-2005 University of Cambridge.------------------------------------------------------------------------------PCREMATCHING(3) PCREMATCHING(3)NAME PCRE - Perl-compatible regular expressionsPCRE MATCHING ALGORITHMS This document describes the two different algorithms that are available in PCRE for matching a compiled regular expression against a given sub- ject string. The "standard" algorithm is the one provided by the pcre_exec() function. This works in the same was as Perl's matching function, and provides a Perl-compatible matching operation. An alternative algorithm is provided by the pcre_dfa_exec() function; this operates in a different way, and is not Perl-compatible. It has advantages and disadvantages compared with the standard algorithm, and these are described below. When there is only one possible way in which a given subject string can match a pattern, the two algorithms give the same answer. A difference arises, however, when there are multiple possibilities. For example, if the pattern ^<.*> is matched against the string <something> <something else> <something further> there are three possible answers. The standard algorithm finds only one of them, whereas the DFA algorithm finds all three.REGULAR EXPRESSIONS AS TREES The set of strings that are matched by a regular expression can be rep- resented as a tree structure. An unlimited repetition in the pattern makes the tree of infinite size, but it is still a tree. Matching the pattern to a given subject string (from a given starting point) can be thought of as a search of the tree. There are two standard ways to search a tree: depth-first and breadth-first, and these correspond to the two matching algorithms provided by PCRE.THE STANDARD MATCHING ALGORITHM In the terminology of Jeffrey Friedl's book Mastering Regular Expres- sions, the standard algorithm is an "NFA algorithm". It conducts a depth-first search of the pattern tree. That is, it proceeds along a single path through the tree, checking that the subject matches what is required. When there is a mismatch, the algorithm tries any alterna- tives at the current point, and if they all fail, it backs up to the previous branch point in the tree, and tries the next alternative branch at that level. This often involves backing up (moving to the left) in the subject string as well. The order in which repetition branches are tried is controlled by the greedy or ungreedy nature of the quantifier. If a leaf node is reached, a matching string has been found, and at that point the algorithm stops. Thus, if there is more than one possi- ble match, this algorithm returns the first one that it finds. Whether this is the shortest, the longest, or some intermediate length depends on the way the greedy and ungreedy repetition quantifiers are specified in the pattern. Because it ends up with a single path through the tree, it is rela- tively straightforward for this algorithm to keep track of the sub- strings that are matched by portions of the pattern in parentheses. This provides support for capturing parentheses and back references.THE DFA MATCHING ALGORITHM DFA stands for "deterministic finite automaton", but you do not need to understand the origins of that name. This algorithm conducts a breadth- first search of the tree. Starting from the first matching point in the subject, it scans the subject string from left to right, once, charac- ter by character, and as it does this, it remembers all the paths through the tree that represent valid matches. The scan continues until either the end of the subject is reached, or there are no more unterminated paths. At this point, terminated paths represent the different matching possibilities (if there are none, the match has failed). Thus, if there is more than one possible match, this algorithm finds all of them, and in particular, it finds the long- est. In PCRE, there is an option to stop the algorithm after the first match (which is necessarily the shortest) has been found. Note that all the matches that are found start at the same point in the subject. If the pattern cat(er(pillar)?) is matched against the string "the caterpillar catchment", the result will be the three strings "cat", "cater", and "caterpillar" that start at the fourth character of the subject. The algorithm does not automat- ically move on to find matches that start at later positions. There are a number of features of PCRE regular expressions that are not supported by the DFA matching algorithm. They are as follows: 1. Because the algorithm finds all possible matches, the greedy or ungreedy nature of repetition quantifiers is not relevant. Greedy and ungreedy quantifiers are treated in exactly the same way. 2. When dealing with multiple paths through the tree simultaneously, it is not straightforward to keep track of captured substrings for the different matching possibilities, and PCRE's implementation of this algorithm does not attempt to do this. This means that no captured sub- strings are available. 3. Because no substrings are captured, back references within the pat- tern are not supported, and cause errors if encountered. 4. For the same reason, conditional expressions that use a backrefer- ence as the condition are not supported. 5. Callouts are supported, but the value of the capture_top field is always 1, and the value of the capture_last field is always -1. 6. The \C escape sequence, which (in the standard algorithm) matches a single byte, even in UTF-8 mode, is not supported because the DFA algo- rithm moves through the subject string one character at a time, for all active paths through the tree.ADVANTAGES OF THE DFA ALGORITHM Using the DFA matching algorithm provides the following advantages: 1. All possible matches (at a single point in the subject) are automat- ically found, and in particular, the longest match is found. To find more than one match using the standard algorithm, you have to do kludgy things with callouts. 2. There is much better support for partial matching. The restrictions on the content of the pattern that apply when using the standard algo- rithm for partial matching do not apply to the DFA algorithm. For non- anchored patterns, the starting position of a partial match is avail- able. 3. Because the DFA algorithm scans the subject string just once, and never needs to backtrack, it is possible to pass very long subject strings to the matching function in several pieces, checking for par- tial matching each time.DISADVANTAGES OF THE DFA ALGORITHM
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -