⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glpapi12.c

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 C
📖 第 1 页 / 共 2 页
字号:
/* glpapi12.c (branch-and-bound interface routines) *//************************************************************************  This code is part of GLPK (GNU Linear Programming Kit).**  Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,*  Department for Applied Informatics, Moscow Aviation Institute,*  Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.**  GLPK is free software: you can redistribute it and/or modify it*  under the terms of the GNU General Public License as published by*  the Free Software Foundation, either version 3 of the License, or*  (at your option) any later version.**  GLPK is distributed in the hope that it will be useful, but WITHOUT*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public*  License for more details.**  You should have received a copy of the GNU General Public License*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#include "glpios.h"/************************************************************************  NAME**  glp_ios_reason - determine reason for calling the callback routine**  SYNOPSIS**  glp_ios_reason(glp_tree *tree);**  RETURNS**  The routine glp_ios_reason returns a code, which indicates why the*  user-defined callback routine is being called. */int glp_ios_reason(glp_tree *tree){     return         tree->reason;}/************************************************************************  NAME**  glp_ios_get_prob - access the problem object**  SYNOPSIS**  glp_prob *glp_ios_get_prob(glp_tree *tree);**  DESCRIPTION**  The routine glp_ios_get_prob can be called from the user-defined*  callback routine to access the problem object, which is used by the*  MIP solver. It is the original problem object passed to the routine*  glp_intopt if the MIP presolver is not used; otherwise it is an*  internal problem object built by the presolver. If the current*  subproblem exists, LP segment of the problem object corresponds to*  its LP relaxation.**  RETURNS**  The routine glp_ios_get_prob returns a pointer to the problem object*  used by the MIP solver. */glp_prob *glp_ios_get_prob(glp_tree *tree){     return         tree->mip;}/************************************************************************  NAME**  glp_ios_tree_size - determine size of the branch-and-bound tree**  SYNOPSIS**  void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt,*     int *t_cnt);**  DESCRIPTION**  The routine glp_ios_tree_size stores the following three counts which*  characterize the current size of the branch-and-bound tree:**  a_cnt is the current number of active nodes, i.e. the current size of*        the active list;**  n_cnt is the current number of all (active and inactive) nodes;**  t_cnt is the total number of nodes including those which have been*        already removed from the tree. This count is increased whenever*        a new node appears in the tree and never decreased.**  If some of the parameters a_cnt, n_cnt, t_cnt is a null pointer, the*  corresponding count is not stored. */void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt,      int *t_cnt){     if (a_cnt != NULL) *a_cnt = tree->a_cnt;      if (n_cnt != NULL) *n_cnt = tree->n_cnt;      if (t_cnt != NULL) *t_cnt = tree->t_cnt;      return;}/************************************************************************  NAME**  glp_ios_curr_node - determine current active subproblem**  SYNOPSIS**  int glp_ios_curr_node(glp_tree *tree);**  RETURNS**  The routine glp_ios_curr_node returns the reference number of the*  current active subproblem. However, if the current subproblem does*  not exist, the routine returns zero. */int glp_ios_curr_node(glp_tree *tree){     IOSNPD *node;      /* obtain pointer to the current subproblem */      node = tree->curr;      /* return its reference number */      return node == NULL ? 0 : node->p;}/************************************************************************  NAME**  glp_ios_next_node - determine next active subproblem**  SYNOPSIS**  int glp_ios_next_node(glp_tree *tree, int p);**  RETURNS**  If the parameter p is zero, the routine glp_ios_next_node returns*  the reference number of the first active subproblem. However, if the*  tree is empty, zero is returned.**  If the parameter p is not zero, it must specify the reference number*  of some active subproblem, in which case the routine returns the*  reference number of the next active subproblem. However, if there is*  no next active subproblem in the list, zero is returned.**  All subproblems in the active list are ordered chronologically, i.e.*  subproblem A precedes subproblem B if A was created before B. */int glp_ios_next_node(glp_tree *tree, int p){     IOSNPD *node;      if (p == 0)      {  /* obtain pointer to the first active subproblem */         node = tree->head;      }      else      {  /* obtain pointer to the specified subproblem */         if (!(1 <= p && p <= tree->nslots))err:        xerror("glp_ios_next_node: p = %d; invalid subproblem refer"               "ence number\n", p);         node = tree->slot[p].node;         if (node == NULL) goto err;         /* the specified subproblem must be active */         if (node->count != 0)            xerror("glp_ios_next_node: p = %d; subproblem not in the ac"               "tive list\n", p);         /* obtain pointer to the next active subproblem */         node = node->next;      }      /* return the reference number */      return node == NULL ? 0 : node->p;}/************************************************************************  NAME**  glp_ios_prev_node - determine previous active subproblem**  SYNOPSIS**  int glp_ios_prev_node(glp_tree *tree, int p);**  RETURNS**  If the parameter p is zero, the routine glp_ios_prev_node returns*  the reference number of the last active subproblem. However, if the*  tree is empty, zero is returned.**  If the parameter p is not zero, it must specify the reference number*  of some active subproblem, in which case the routine returns the*  reference number of the previous active subproblem. However, if there*  is no previous active subproblem in the list, zero is returned.**  All subproblems in the active list are ordered chronologically, i.e.*  subproblem A precedes subproblem B if A was created before B. */int glp_ios_prev_node(glp_tree *tree, int p){     IOSNPD *node;      if (p == 0)      {  /* obtain pointer to the last active subproblem */         node = tree->tail;      }      else      {  /* obtain pointer to the specified subproblem */         if (!(1 <= p && p <= tree->nslots))err:        xerror("glp_ios_prev_node: p = %d; invalid subproblem refer"               "ence number\n", p);         node = tree->slot[p].node;         if (node == NULL) goto err;         /* the specified subproblem must be active */         if (node->count != 0)            xerror("glp_ios_prev_node: p = %d; subproblem not in the ac"               "tive list\n", p);         /* obtain pointer to the previous active subproblem */         node = node->prev;      }      /* return the reference number */      return node == NULL ? 0 : node->p;}/************************************************************************  NAME**  glp_ios_up_node - determine parent subproblem**  SYNOPSIS**  int glp_ios_up_node(glp_tree *tree, int p);**  RETURNS**  The parameter p must specify the reference number of some (active or*  inactive) subproblem, in which case the routine iet_get_up_node*  returns the reference number of its parent subproblem. However, if*  the specified subproblem is the root of the tree and, therefore, has*  no parent, the routine returns zero. */int glp_ios_up_node(glp_tree *tree, int p){     IOSNPD *node;      /* obtain pointer to the specified subproblem */      if (!(1 <= p && p <= tree->nslots))err:     xerror("glp_ios_up_node: p = %d; invalid subproblem reference "            "number\n", p);      node = tree->slot[p].node;      if (node == NULL) goto err;      /* obtain pointer to the parent subproblem */      node = node->up;      /* return the reference number */      return node == NULL ? 0 : node->p;}/************************************************************************  NAME**  glp_ios_node_level - determine subproblem level**  SYNOPSIS**  int glp_ios_node_level(glp_tree *tree, int p);**  RETURNS**  The routine glp_ios_node_level returns the level of the subproblem,*  whose reference number is p, in the branch-and-bound tree. (The root*  subproblem has level 0, and the level of any other subproblem is the*  level of its parent plus one.) */int glp_ios_node_level(glp_tree *tree, int p){     IOSNPD *node;      /* obtain pointer to the specified subproblem */      if (!(1 <= p && p <= tree->nslots))err:     xerror("glp_ios_node_level: p = %d; invalid subproblem referen"            "ce number\n", p);      node = tree->slot[p].node;      if (node == NULL) goto err;      /* return the node level */      return node->level;}/************************************************************************  NAME**  glp_ios_node_bound - determine subproblem local bound**  SYNOPSIS**  double glp_ios_node_bound(glp_tree *tree, int p);**  RETURNS**  The routine glp_ios_node_bound returns the local bound for (active or*  inactive) subproblem, whose reference number is p.**  COMMENTS**  The local bound for subproblem p is an lower (minimization) or upper*  (maximization) bound for integer optimal solution to this subproblem*  (not to the original problem). This bound is local in the sense that*  only subproblems in the subtree rooted at node p cannot have better*  integer feasible solutions.**  On creating a subproblem (due to the branching step) its local bound*  is inherited from its parent and then may get only stronger (never*  weaker). For the root subproblem its local bound is initially set to*  -DBL_MAX (minimization) or +DBL_MAX (maximization) and then improved*  as the root LP relaxation has been solved.**  Note that the local bound is not necessarily the optimal objective*  value to corresponding LP relaxation; it may be stronger. */double glp_ios_node_bound(glp_tree *tree, int p){     IOSNPD *node;      /* obtain pointer to the specified subproblem */      if (!(1 <= p && p <= tree->nslots))err:     xerror("glp_ios_node_bound: p = %d; invalid subproblem referen"            "ce number\n", p);      node = tree->slot[p].node;      if (node == NULL) goto err;      /* return the node local bound */      return node->bound;}/************************************************************************  NAME**  glp_ios_best_node - find active subproblem with best local bound**  SYNOPSIS**  int glp_ios_best_node(glp_tree *tree);**  RETURNS**  The routine glp_ios_best_node returns the reference number of the*  active subproblem, whose local bound is best (i.e. smallest in case*  of minimization or largest in case of maximization). However, if the*  tree is empty, the routine returns zero.**  COMMENTS**  The best local bound is an lower (minimization) or upper*  (maximization) bound for integer optimal solution to the original*  MIP problem. */int glp_ios_best_node(glp_tree *tree){     return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -