⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glplpx02.c

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 C
字号:
/* glplpx02.c *//************************************************************************  This code is part of GLPK (GNU Linear Programming Kit).**  Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,*  Department for Applied Informatics, Moscow Aviation Institute,*  Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.**  GLPK is free software: you can redistribute it and/or modify it*  under the terms of the GNU General Public License as published by*  the Free Software Foundation, either version 3 of the License, or*  (at your option) any later version.**  GLPK is distributed in the hope that it will be useful, but WITHOUT*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public*  License for more details.**  You should have received a copy of the GNU General Public License*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#include "glpapi.h"#define xfault xerror/*------------------------------------------------------------------------ lpx_order_matrix - order rows and columns of the constraint matrix.---- *Synopsis*---- #include "glplpx.h"-- void lpx_order_matrix(glp_prob *lp);---- *Description*---- The routine lpx_order_matrix rebuilds row and column linked lists of-- the constraint matrix of the specified problem object.---- On exit the constraint matrix is not changed, however, elements in-- the row linked lists are ordered in ascending their column indices,-- and elements in the column linked are ordered in ascending their row-- indices. */void lpx_order_matrix(glp_prob *lp){     GLPAIJ *aij;      int i, j;      /* rebuild row lists */      for (i = lp->m; i >= 1; i--)         lp->row[i]->ptr = NULL;      for (j = lp->n; j >= 1; j--)      {  for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next)         {  i = aij->row->i;            aij->r_prev = NULL;            aij->r_next = lp->row[i]->ptr;            if (aij->r_next != NULL) aij->r_next->r_prev = aij;            lp->row[i]->ptr = aij;         }      }      /* rebuild column lists */      for (j = lp->n; j >= 1; j--)         lp->col[j]->ptr = NULL;      for (i = lp->m; i >= 1; i--)      {  for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next)         {  j = aij->col->j;            aij->c_prev = NULL;            aij->c_next = lp->col[j]->ptr;            if (aij->c_next != NULL) aij->c_next->c_prev = aij;            lp->col[j]->ptr = aij;         }      }      return;}/************************************************************************  NAME**  lpx_put_solution - store basic solution components**  SYNOPSIS**  void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,*     const int *d_stat, const double *obj_val, const int r_stat[],*     const double r_prim[], const double r_dual[], const int c_stat[],*     const double c_prim[], const double c_dual[])**  DESCRIPTION**  The routine lpx_put_solution stores basic solution components to the*  specified problem object.**  The parameter inval is the basis factorization invalidity flag.*  If this flag is clear, the current status of the basis factorization*  remains unchanged. If this flag is set, the routine invalidates the*  basis factorization.**  The parameter p_stat is a pointer to the status of primal basic*  solution, which should be specified as follows:**  GLP_UNDEF  - primal solution is undefined;*  GLP_FEAS   - primal solution is feasible;*  GLP_INFEAS - primal solution is infeasible;*  GLP_NOFEAS - no primal feasible solution exists.**  If the parameter p_stat is NULL, the current status of primal basic*  solution remains unchanged.**  The parameter d_stat is a pointer to the status of dual basic*  solution, which should be specified as follows:**  GLP_UNDEF  - dual solution is undefined;*  GLP_FEAS   - dual solution is feasible;*  GLP_INFEAS - dual solution is infeasible;*  GLP_NOFEAS - no dual feasible solution exists.**  If the parameter d_stat is NULL, the current status of dual basic*  solution remains unchanged.**  The parameter obj_val is a pointer to the objective function value.*  If it is NULL, the current value of the objective function remains*  unchanged.**  The array element r_stat[i], 1 <= i <= m (where m is the number of*  rows in the problem object), specifies the status of i-th auxiliary*  variable, which should be specified as follows:**  GLP_BS - basic variable;*  GLP_NL - non-basic variable on lower bound;*  GLP_NU - non-basic variable on upper bound;*  GLP_NF - non-basic free variable;*  GLP_NS - non-basic fixed variable.**  If the parameter r_stat is NULL, the current statuses of auxiliary*  variables remain unchanged.**  The array element r_prim[i], 1 <= i <= m (where m is the number of*  rows in the problem object), specifies a primal value of i-th*  auxiliary variable. If the parameter r_prim is NULL, the current*  primal values of auxiliary variables remain unchanged.**  The array element r_dual[i], 1 <= i <= m (where m is the number of*  rows in the problem object), specifies a dual value (reduced cost)*  of i-th auxiliary variable. If the parameter r_dual is NULL, the*  current dual values of auxiliary variables remain unchanged.**  The array element c_stat[j], 1 <= j <= n (where n is the number of*  columns in the problem object), specifies the status of j-th*  structural variable, which should be specified as follows:**  GLP_BS - basic variable;*  GLP_NL - non-basic variable on lower bound;*  GLP_NU - non-basic variable on upper bound;*  GLP_NF - non-basic free variable;*  GLP_NS - non-basic fixed variable.**  If the parameter c_stat is NULL, the current statuses of structural*  variables remain unchanged.**  The array element c_prim[j], 1 <= j <= n (where n is the number of*  columns in the problem object), specifies a primal value of j-th*  structural variable. If the parameter c_prim is NULL, the current*  primal values of structural variables remain unchanged.**  The array element c_dual[j], 1 <= j <= n (where n is the number of*  columns in the problem object), specifies a dual value (reduced cost)*  of j-th structural variable. If the parameter c_dual is NULL, the*  current dual values of structural variables remain unchanged. */void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat,      const int *d_stat, const double *obj_val, const int r_stat[],      const double r_prim[], const double r_dual[], const int c_stat[],      const double c_prim[], const double c_dual[]){     GLPROW *row;      GLPCOL *col;      int i, j;      /* invalidate the basis factorization, if required */      if (inval) lp->valid = 0;      /* store primal status */      if (p_stat != NULL)      {  if (!(*p_stat == GLP_UNDEF  || *p_stat == GLP_FEAS ||               *p_stat == GLP_INFEAS || *p_stat == GLP_NOFEAS))            xfault("lpx_put_solution: p_stat = %d; invalid primal statu"               "s\n", *p_stat);         lp->pbs_stat = *p_stat;      }      /* store dual status */      if (d_stat != NULL)      {  if (!(*d_stat == GLP_UNDEF  || *d_stat == GLP_FEAS ||               *d_stat == GLP_INFEAS || *d_stat == GLP_NOFEAS))            xfault("lpx_put_solution: d_stat = %d; invalid dual status "               "\n", *d_stat);         lp->dbs_stat = *d_stat;      }      /* store objective function value */      if (obj_val != NULL) lp->obj_val = *obj_val;      /* store row solution components */      for (i = 1; i <= lp->m; i++)      {  row = lp->row[i];         if (r_stat != NULL)         {  if (!(r_stat[i] == GLP_BS ||                  row->type == GLP_FR && r_stat[i] == GLP_NF ||                  row->type == GLP_LO && r_stat[i] == GLP_NL ||                  row->type == GLP_UP && r_stat[i] == GLP_NU ||                  row->type == GLP_DB && r_stat[i] == GLP_NL ||                  row->type == GLP_DB && r_stat[i] == GLP_NU ||                  row->type == GLP_FX && r_stat[i] == GLP_NS))               xfault("lpx_put_solution: r_stat[%d] = %d; invalid row s"                  "tatus\n", i, r_stat[i]);            row->stat = r_stat[i];         }         if (r_prim != NULL) row->prim = r_prim[i];         if (r_dual != NULL) row->dual = r_dual[i];      }      /* store column solution components */      for (j = 1; j <= lp->n; j++)      {  col = lp->col[j];         if (c_stat != NULL)         {  if (!(c_stat[j] == GLP_BS ||                  col->type == GLP_FR && c_stat[j] == GLP_NF ||                  col->type == GLP_LO && c_stat[j] == GLP_NL ||                  col->type == GLP_UP && c_stat[j] == GLP_NU ||                  col->type == GLP_DB && c_stat[j] == GLP_NL ||                  col->type == GLP_DB && c_stat[j] == GLP_NU ||                  col->type == GLP_FX && c_stat[j] == GLP_NS))               xfault("lpx_put_solution: c_stat[%d] = %d; invalid colum"                  "n status\n", j, c_stat[j]);            col->stat = c_stat[j];         }         if (c_prim != NULL) col->prim = c_prim[j];         if (c_dual != NULL) col->dual = c_dual[j];      }      return;}/*------------------------------------------------------------------------ lpx_put_ipt_soln - store interior-point solution components.---- *Synopsis*---- #include "glplpx.h"-- void lpx_put_ipt_soln(glp_prob *lp, int t_stat, double row_pval[],--    double row_dval[], double col_pval[], double col_dval[]);---- *Description*---- The routine lpx_put_ipt_soln stores solution components obtained by-- interior-point solver into the specified problem object.---- NOTE: This routine is intended for internal use only. */void lpx_put_ipt_soln(glp_prob *lp, int t_stat, double row_pval[],      double row_dval[], double col_pval[], double col_dval[]){     GLPROW *row;      GLPCOL *col;      double sum;      int i, j;      /* store interior-point status */      if (!(t_stat == LPX_T_UNDEF || t_stat == LPX_T_OPT))         xfault("lpx_put_ipm_soln: t_stat = %d; invalid interior-point "            "status\n", t_stat);      lp->ipt_stat = (t_stat == LPX_T_UNDEF ? GLP_UNDEF : GLP_OPT);      /* store row solution components */      for (i = 1; i <= lp->m; i++)      {  row = lp->row[i];         if (row_pval != NULL) row->pval = row_pval[i];         if (row_dval != NULL) row->dval = row_dval[i];      }      /* store column solution components */      for (j = 1; j <= lp->n; j++)      {  col = lp->col[j];         if (col_pval != NULL) col->pval = col_pval[j];         if (col_dval != NULL) col->dval = col_dval[j];      }      /* compute the objective function value */      sum = lp->c0;      for (j = 1; j <= lp->n; j++)      {  col = lp->col[j];         sum += col->coef * col->pval;      }      lp->ipt_obj = sum;      return;}/*------------------------------------------------------------------------ lpx_put_mip_soln - store mixed integer solution components.---- *Synopsis*---- #include "glplpx.h"-- void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],--    double col_mipx[]);---- *Description*---- The routine lpx_put_mip_soln stores solution components obtained by-- branch-and-bound solver into the specified problem object.---- NOTE: This routine is intended for internal use only. */void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[],      double col_mipx[]){     GLPROW *row;      GLPCOL *col;      int i, j;      double sum;      /* store mixed integer status */#if 0      if (!(i_stat == LPX_I_UNDEF || i_stat == LPX_I_OPT ||            i_stat == LPX_I_FEAS  || i_stat == LPX_I_NOFEAS))         fault("lpx_put_mip_soln: i_stat = %d; invalid mixed integer st"            "atus", i_stat);      lp->i_stat = i_stat;#else      switch (i_stat)      {  case LPX_I_UNDEF:            lp->mip_stat = GLP_UNDEF; break;         case LPX_I_OPT:            lp->mip_stat = GLP_OPT;  break;         case LPX_I_FEAS:            lp->mip_stat = GLP_FEAS; break;         case LPX_I_NOFEAS:            lp->mip_stat = GLP_NOFEAS; break;         default:            xfault("lpx_put_mip_soln: i_stat = %d; invalid mixed intege"               "r status\n", i_stat);      }#endif      /* store row solution components */      if (row_mipx != NULL)      {  for (i = 1; i <= lp->m; i++)         {  row = lp->row[i];            row->mipx = row_mipx[i];         }      }      /* store column solution components */      if (col_mipx != NULL)      {  for (j = 1; j <= lp->n; j++)         {  col = lp->col[j];            col->mipx = col_mipx[j];         }      }      /* if the solution is claimed to be integer feasible, check it */      if (lp->mip_stat == GLP_OPT || lp->mip_stat == GLP_FEAS)      {  for (j = 1; j <= lp->n; j++)         {  col = lp->col[j];            if (col->kind == GLP_IV && col->mipx != floor(col->mipx))               xfault("lpx_put_mip_soln: col_mipx[%d] = %.*g; must be i"                  "ntegral\n", j, DBL_DIG, col->mipx);         }      }      /* compute the objective function value */      sum = lp->c0;      for (j = 1; j <= lp->n; j++)      {  col = lp->col[j];         sum += col->coef * col->mipx;      }      lp->mip_obj = sum;      return;}/* eof */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -