⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glpssx01.c

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 C
📖 第 1 页 / 共 2 页
字号:
      k = Q_col[m+q]; /* x[k] = xN[q] */      if (k <= m)      {  /* N[q] is a column of the unity matrix I */         mpq_set_si(aq[k], 1, 1);      }      else      {  /* N[q] is a column of the original constraint matrix -A */         for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++)            mpq_neg(aq[A_ind[ptr]], A_val[ptr]);      }      /* aq := inv(B) * aq */      bfx_ftran(ssx->binv, aq, 1);      /* aq := - aq */      for (i = 1; i <= m; i++) mpq_neg(aq[i], aq[i]);      return;}/*----------------------------------------------------------------------// ssx_chuzc - choose pivot column.//// This routine chooses non-basic variable xN[q] whose reduced cost// indicates possible improving of the objective function to enter it// in the basis.//// Currently the standard (textbook) pricing is used, i.e. that// non-basic variable is preferred which has greatest reduced cost (in// magnitude).//// If xN[q] has been chosen, the routine stores its number q and also// sets the flag q_dir that indicates direction in which xN[q] has to// change (+1 means increasing, -1 means decreasing).//// If the choice cannot be made, because the current basic solution is// dual feasible, the routine sets the number q to 0. */void ssx_chuzc(SSX *ssx){     int m = ssx->m;      int n = ssx->n;      int dir = (ssx->dir == SSX_MIN ? +1 : -1);      int *Q_col = ssx->Q_col;      int *stat = ssx->stat;      mpq_t *cbar = ssx->cbar;      int j, k, s, q, q_dir;      double best, temp;      /* nothing is chosen so far */      q = 0, q_dir = 0, best = 0.0;      /* look through the list of non-basic variables */      for (j = 1; j <= n; j++)      {  k = Q_col[m+j]; /* x[k] = xN[j] */         s = dir * mpq_sgn(cbar[j]);         if ((stat[k] == SSX_NF || stat[k] == SSX_NL) && s < 0 ||             (stat[k] == SSX_NF || stat[k] == SSX_NU) && s > 0)         {  /* reduced cost of xN[j] indicates possible improving of               the objective function */            temp = fabs(mpq_get_d(cbar[j]));            xassert(temp != 0.0);            if (q == 0 || best < temp)               q = j, q_dir = - s, best = temp;         }      }      ssx->q = q, ssx->q_dir = q_dir;      return;}/*----------------------------------------------------------------------// ssx_chuzr - choose pivot row.//// This routine looks through elements of q-th column of the simplex// table and chooses basic variable xB[p] which should leave the basis.//// The choice is based on the standard (textbook) ratio test.//// If xB[p] has been chosen, the routine stores its number p and also// sets its non-basic status p_stat which should be assigned to xB[p]// when it has left the basis and become xN[q].//// Special case p < 0 means that xN[q] is double-bounded variable and// it reaches its opposite bound before any basic variable does that,// so the current basis remains unchanged.//// If the choice cannot be made, because xN[q] can infinitely change in// the feasible direction, the routine sets the number p to 0. */void ssx_chuzr(SSX *ssx){     int m = ssx->m;      int n = ssx->n;      int *type = ssx->type;      mpq_t *lb = ssx->lb;      mpq_t *ub = ssx->ub;      int *Q_col = ssx->Q_col;      mpq_t *bbar = ssx->bbar;      int q = ssx->q;      mpq_t *aq = ssx->aq;      int q_dir = ssx->q_dir;      int i, k, s, t, p, p_stat;      mpq_t teta, temp;      mpq_init(teta);      mpq_init(temp);      xassert(1 <= q && q <= n);      xassert(q_dir == +1 || q_dir == -1);      /* nothing is chosen so far */      p = 0, p_stat = 0;      /* look through the list of basic variables */      for (i = 1; i <= m; i++)      {  s = q_dir * mpq_sgn(aq[i]);         if (s < 0)         {  /* xB[i] decreases */            k = Q_col[i]; /* x[k] = xB[i] */            t = type[k];            if (t == SSX_LO || t == SSX_DB || t == SSX_FX)            {  /* xB[i] has finite lower bound */               mpq_sub(temp, bbar[i], lb[k]);               mpq_div(temp, temp, aq[i]);               mpq_abs(temp, temp);               if (p == 0 || mpq_cmp(teta, temp) > 0)               {  p = i;                  p_stat = (t == SSX_FX ? SSX_NS : SSX_NL);                  mpq_set(teta, temp);               }            }         }         else if (s > 0)         {  /* xB[i] increases */            k = Q_col[i]; /* x[k] = xB[i] */            t = type[k];            if (t == SSX_UP || t == SSX_DB || t == SSX_FX)            {  /* xB[i] has finite upper bound */               mpq_sub(temp, bbar[i], ub[k]);               mpq_div(temp, temp, aq[i]);               mpq_abs(temp, temp);               if (p == 0 || mpq_cmp(teta, temp) > 0)               {  p = i;                  p_stat = (t == SSX_FX ? SSX_NS : SSX_NU);                  mpq_set(teta, temp);               }            }         }         /* if something has been chosen and the ratio test indicates            exact degeneracy, the search can be finished */         if (p != 0 && mpq_sgn(teta) == 0) break;      }      /* if xN[q] is double-bounded, check if it can reach its opposite         bound before any basic variable */      k = Q_col[m+q]; /* x[k] = xN[q] */      if (type[k] == SSX_DB)      {  mpq_sub(temp, ub[k], lb[k]);         if (p == 0 || mpq_cmp(teta, temp) > 0)         {  p = -1;            p_stat = -1;            mpq_set(teta, temp);         }      }      ssx->p = p;      ssx->p_stat = p_stat;      /* if xB[p] has been chosen, determine its actual change in the         adjacent basis (it has the same sign as q_dir) */      if (p != 0)      {  xassert(mpq_sgn(teta) >= 0);         if (q_dir > 0)            mpq_set(ssx->delta, teta);         else            mpq_neg(ssx->delta, teta);      }      mpq_clear(teta);      mpq_clear(temp);      return;}/*----------------------------------------------------------------------// ssx_update_bbar - update values of basic variables.//// This routine recomputes the current values of basic variables for// the adjacent basis.//// The simplex table for the current basis is the following:////    xB[i] = sum{j in 1..n} alfa[i,j] * xN[q],  i = 1,...,m//// therefore////    delta xB[i] = alfa[i,q] * delta xN[q],  i = 1,...,m//// where delta xN[q] = xN.new[q] - xN[q] is the change of xN[q] in the// adjacent basis, and delta xB[i] = xB.new[i] - xB[i] is the change of// xB[i]. This gives formulae for recomputing values of xB[i]:////    xB.new[p] = xN[q] + delta xN[q]//// (because xN[q] becomes xB[p] in the adjacent basis), and////    xB.new[i] = xB[i] + alfa[i,q] * delta xN[q],  i != p//// for other basic variables. */void ssx_update_bbar(SSX *ssx){     int m = ssx->m;      int n = ssx->n;      mpq_t *bbar = ssx->bbar;      mpq_t *cbar = ssx->cbar;      int p = ssx->p;      int q = ssx->q;      mpq_t *aq = ssx->aq;      int i;      mpq_t temp;      mpq_init(temp);      xassert(1 <= q && q <= n);      if (p < 0)      {  /* xN[q] is double-bounded and goes to its opposite bound */         /* nop */;      }      else      {  /* xN[q] becomes xB[p] in the adjacent basis */         /* xB.new[p] = xN[q] + delta xN[q] */         xassert(1 <= p && p <= m);         ssx_get_xNj(ssx, q, temp);         mpq_add(bbar[p], temp, ssx->delta);      }      /* update values of other basic variables depending on xN[q] */      for (i = 1; i <= m; i++)      {  if (i == p) continue;         /* xB.new[i] = xB[i] + alfa[i,q] * delta xN[q] */         if (mpq_sgn(aq[i]) == 0) continue;         mpq_mul(temp, aq[i], ssx->delta);         mpq_add(bbar[i], bbar[i], temp);      }#if 1      /* update value of the objective function */      /* z.new = z + d[q] * delta xN[q] */      mpq_mul(temp, cbar[q], ssx->delta);      mpq_add(bbar[0], bbar[0], temp);#endif      mpq_clear(temp);      return;}/*------------------------------------------------------------------------ ssx_update_pi - update simplex multipliers.---- This routine recomputes the vector of simplex multipliers for the-- adjacent basis. */void ssx_update_pi(SSX *ssx){     int m = ssx->m;      int n = ssx->n;      mpq_t *pi = ssx->pi;      mpq_t *cbar = ssx->cbar;      int p = ssx->p;      int q = ssx->q;      mpq_t *aq = ssx->aq;      mpq_t *rho = ssx->rho;      int i;      mpq_t new_dq, temp;      mpq_init(new_dq);      mpq_init(temp);      xassert(1 <= p && p <= m);      xassert(1 <= q && q <= n);      /* compute d[q] in the adjacent basis */      mpq_div(new_dq, cbar[q], aq[p]);      /* update the vector of simplex multipliers */      for (i = 1; i <= m; i++)      {  if (mpq_sgn(rho[i]) == 0) continue;         mpq_mul(temp, new_dq, rho[i]);         mpq_sub(pi[i], pi[i], temp);      }      mpq_clear(new_dq);      mpq_clear(temp);      return;}/*----------------------------------------------------------------------// ssx_update_cbar - update reduced costs of non-basic variables.//// This routine recomputes the vector of reduced costs of non-basic// variables for the adjacent basis. */void ssx_update_cbar(SSX *ssx){     int m = ssx->m;      int n = ssx->n;      mpq_t *cbar = ssx->cbar;      int p = ssx->p;      int q = ssx->q;      mpq_t *ap = ssx->ap;      int j;      mpq_t temp;      mpq_init(temp);      xassert(1 <= p && p <= m);      xassert(1 <= q && q <= n);      /* compute d[q] in the adjacent basis */      /* d.new[q] = d[q] / alfa[p,q] */      mpq_div(cbar[q], cbar[q], ap[q]);      /* update reduced costs of other non-basic variables */      for (j = 1; j <= n; j++)      {  if (j == q) continue;         /* d.new[j] = d[j] - (alfa[p,j] / alfa[p,q]) * d[q] */         if (mpq_sgn(ap[j]) == 0) continue;         mpq_mul(temp, ap[j], cbar[q]);         mpq_sub(cbar[j], cbar[j], temp);      }      mpq_clear(temp);      return;}/*----------------------------------------------------------------------// ssx_change_basis - change current basis to adjacent one.//// This routine changes the current basis to the adjacent one swapping// basic variable xB[p] and non-basic variable xN[q]. */void ssx_change_basis(SSX *ssx){     int m = ssx->m;      int n = ssx->n;      int *type = ssx->type;      int *stat = ssx->stat;      int *Q_row = ssx->Q_row;      int *Q_col = ssx->Q_col;      int p = ssx->p;      int q = ssx->q;      int p_stat = ssx->p_stat;      int k, kp, kq;      if (p < 0)      {  /* special case: xN[q] goes to its opposite bound */         xassert(1 <= q && q <= n);         k = Q_col[m+q]; /* x[k] = xN[q] */         xassert(type[k] == SSX_DB);         switch (stat[k])         {  case SSX_NL:               stat[k] = SSX_NU;               break;            case SSX_NU:               stat[k] = SSX_NL;               break;            default:               xassert(stat != stat);         }      }      else      {  /* xB[p] leaves the basis, xN[q] enters the basis */         xassert(1 <= p && p <= m);         xassert(1 <= q && q <= n);         kp = Q_col[p];   /* x[kp] = xB[p] */         kq = Q_col[m+q]; /* x[kq] = xN[q] */         /* check non-basic status of xB[p] which becomes xN[q] */         switch (type[kp])         {  case SSX_FR:               xassert(p_stat == SSX_NF);               break;            case SSX_LO:               xassert(p_stat == SSX_NL);               break;            case SSX_UP:               xassert(p_stat == SSX_NU);               break;            case SSX_DB:               xassert(p_stat == SSX_NL || p_stat == SSX_NU);               break;            case SSX_FX:               xassert(p_stat == SSX_NS);               break;            default:               xassert(type != type);         }         /* swap xB[p] and xN[q] */         stat[kp] = (char)p_stat, stat[kq] = SSX_BS;         Q_row[kp] = m+q, Q_row[kq] = p;         Q_col[p] = kq, Q_col[m+q] = kp;         /* update factorization of the basis matrix */         if (bfx_update(ssx->binv, p))         {  if (ssx_factorize(ssx))               xassert(("Internal error: basis matrix is singular", 0));         }      }      return;}/*----------------------------------------------------------------------// ssx_delete - delete simplex solver workspace.//// This routine deletes the simplex solver workspace freeing all the// memory allocated to this object. */void ssx_delete(SSX *ssx){     int m = ssx->m;      int n = ssx->n;      int nnz = ssx->A_ptr[n+1]-1;      int i, j, k;      xfree(ssx->type);      for (k = 1; k <= m+n; k++) mpq_clear(ssx->lb[k]);      xfree(ssx->lb);      for (k = 1; k <= m+n; k++) mpq_clear(ssx->ub[k]);      xfree(ssx->ub);      for (k = 0; k <= m+n; k++) mpq_clear(ssx->coef[k]);      xfree(ssx->coef);      xfree(ssx->A_ptr);      xfree(ssx->A_ind);      for (k = 1; k <= nnz; k++) mpq_clear(ssx->A_val[k]);      xfree(ssx->A_val);      xfree(ssx->stat);      xfree(ssx->Q_row);      xfree(ssx->Q_col);      bfx_delete_binv(ssx->binv);      for (i = 0; i <= m; i++) mpq_clear(ssx->bbar[i]);      xfree(ssx->bbar);      for (i = 1; i <= m; i++) mpq_clear(ssx->pi[i]);      xfree(ssx->pi);      for (j = 1; j <= n; j++) mpq_clear(ssx->cbar[j]);      xfree(ssx->cbar);      for (i = 1; i <= m; i++) mpq_clear(ssx->rho[i]);      xfree(ssx->rho);      for (j = 1; j <= n; j++) mpq_clear(ssx->ap[j]);      xfree(ssx->ap);      for (i = 1; i <= m; i++) mpq_clear(ssx->aq[i]);      xfree(ssx->aq);      mpq_clear(ssx->delta);      xfree(ssx);      return;}/* eof */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -