📄 glpssx01.c
字号:
k = Q_col[m+q]; /* x[k] = xN[q] */ if (k <= m) { /* N[q] is a column of the unity matrix I */ mpq_set_si(aq[k], 1, 1); } else { /* N[q] is a column of the original constraint matrix -A */ for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) mpq_neg(aq[A_ind[ptr]], A_val[ptr]); } /* aq := inv(B) * aq */ bfx_ftran(ssx->binv, aq, 1); /* aq := - aq */ for (i = 1; i <= m; i++) mpq_neg(aq[i], aq[i]); return;}/*----------------------------------------------------------------------// ssx_chuzc - choose pivot column.//// This routine chooses non-basic variable xN[q] whose reduced cost// indicates possible improving of the objective function to enter it// in the basis.//// Currently the standard (textbook) pricing is used, i.e. that// non-basic variable is preferred which has greatest reduced cost (in// magnitude).//// If xN[q] has been chosen, the routine stores its number q and also// sets the flag q_dir that indicates direction in which xN[q] has to// change (+1 means increasing, -1 means decreasing).//// If the choice cannot be made, because the current basic solution is// dual feasible, the routine sets the number q to 0. */void ssx_chuzc(SSX *ssx){ int m = ssx->m; int n = ssx->n; int dir = (ssx->dir == SSX_MIN ? +1 : -1); int *Q_col = ssx->Q_col; int *stat = ssx->stat; mpq_t *cbar = ssx->cbar; int j, k, s, q, q_dir; double best, temp; /* nothing is chosen so far */ q = 0, q_dir = 0, best = 0.0; /* look through the list of non-basic variables */ for (j = 1; j <= n; j++) { k = Q_col[m+j]; /* x[k] = xN[j] */ s = dir * mpq_sgn(cbar[j]); if ((stat[k] == SSX_NF || stat[k] == SSX_NL) && s < 0 || (stat[k] == SSX_NF || stat[k] == SSX_NU) && s > 0) { /* reduced cost of xN[j] indicates possible improving of the objective function */ temp = fabs(mpq_get_d(cbar[j])); xassert(temp != 0.0); if (q == 0 || best < temp) q = j, q_dir = - s, best = temp; } } ssx->q = q, ssx->q_dir = q_dir; return;}/*----------------------------------------------------------------------// ssx_chuzr - choose pivot row.//// This routine looks through elements of q-th column of the simplex// table and chooses basic variable xB[p] which should leave the basis.//// The choice is based on the standard (textbook) ratio test.//// If xB[p] has been chosen, the routine stores its number p and also// sets its non-basic status p_stat which should be assigned to xB[p]// when it has left the basis and become xN[q].//// Special case p < 0 means that xN[q] is double-bounded variable and// it reaches its opposite bound before any basic variable does that,// so the current basis remains unchanged.//// If the choice cannot be made, because xN[q] can infinitely change in// the feasible direction, the routine sets the number p to 0. */void ssx_chuzr(SSX *ssx){ int m = ssx->m; int n = ssx->n; int *type = ssx->type; mpq_t *lb = ssx->lb; mpq_t *ub = ssx->ub; int *Q_col = ssx->Q_col; mpq_t *bbar = ssx->bbar; int q = ssx->q; mpq_t *aq = ssx->aq; int q_dir = ssx->q_dir; int i, k, s, t, p, p_stat; mpq_t teta, temp; mpq_init(teta); mpq_init(temp); xassert(1 <= q && q <= n); xassert(q_dir == +1 || q_dir == -1); /* nothing is chosen so far */ p = 0, p_stat = 0; /* look through the list of basic variables */ for (i = 1; i <= m; i++) { s = q_dir * mpq_sgn(aq[i]); if (s < 0) { /* xB[i] decreases */ k = Q_col[i]; /* x[k] = xB[i] */ t = type[k]; if (t == SSX_LO || t == SSX_DB || t == SSX_FX) { /* xB[i] has finite lower bound */ mpq_sub(temp, bbar[i], lb[k]); mpq_div(temp, temp, aq[i]); mpq_abs(temp, temp); if (p == 0 || mpq_cmp(teta, temp) > 0) { p = i; p_stat = (t == SSX_FX ? SSX_NS : SSX_NL); mpq_set(teta, temp); } } } else if (s > 0) { /* xB[i] increases */ k = Q_col[i]; /* x[k] = xB[i] */ t = type[k]; if (t == SSX_UP || t == SSX_DB || t == SSX_FX) { /* xB[i] has finite upper bound */ mpq_sub(temp, bbar[i], ub[k]); mpq_div(temp, temp, aq[i]); mpq_abs(temp, temp); if (p == 0 || mpq_cmp(teta, temp) > 0) { p = i; p_stat = (t == SSX_FX ? SSX_NS : SSX_NU); mpq_set(teta, temp); } } } /* if something has been chosen and the ratio test indicates exact degeneracy, the search can be finished */ if (p != 0 && mpq_sgn(teta) == 0) break; } /* if xN[q] is double-bounded, check if it can reach its opposite bound before any basic variable */ k = Q_col[m+q]; /* x[k] = xN[q] */ if (type[k] == SSX_DB) { mpq_sub(temp, ub[k], lb[k]); if (p == 0 || mpq_cmp(teta, temp) > 0) { p = -1; p_stat = -1; mpq_set(teta, temp); } } ssx->p = p; ssx->p_stat = p_stat; /* if xB[p] has been chosen, determine its actual change in the adjacent basis (it has the same sign as q_dir) */ if (p != 0) { xassert(mpq_sgn(teta) >= 0); if (q_dir > 0) mpq_set(ssx->delta, teta); else mpq_neg(ssx->delta, teta); } mpq_clear(teta); mpq_clear(temp); return;}/*----------------------------------------------------------------------// ssx_update_bbar - update values of basic variables.//// This routine recomputes the current values of basic variables for// the adjacent basis.//// The simplex table for the current basis is the following://// xB[i] = sum{j in 1..n} alfa[i,j] * xN[q], i = 1,...,m//// therefore//// delta xB[i] = alfa[i,q] * delta xN[q], i = 1,...,m//// where delta xN[q] = xN.new[q] - xN[q] is the change of xN[q] in the// adjacent basis, and delta xB[i] = xB.new[i] - xB[i] is the change of// xB[i]. This gives formulae for recomputing values of xB[i]://// xB.new[p] = xN[q] + delta xN[q]//// (because xN[q] becomes xB[p] in the adjacent basis), and//// xB.new[i] = xB[i] + alfa[i,q] * delta xN[q], i != p//// for other basic variables. */void ssx_update_bbar(SSX *ssx){ int m = ssx->m; int n = ssx->n; mpq_t *bbar = ssx->bbar; mpq_t *cbar = ssx->cbar; int p = ssx->p; int q = ssx->q; mpq_t *aq = ssx->aq; int i; mpq_t temp; mpq_init(temp); xassert(1 <= q && q <= n); if (p < 0) { /* xN[q] is double-bounded and goes to its opposite bound */ /* nop */; } else { /* xN[q] becomes xB[p] in the adjacent basis */ /* xB.new[p] = xN[q] + delta xN[q] */ xassert(1 <= p && p <= m); ssx_get_xNj(ssx, q, temp); mpq_add(bbar[p], temp, ssx->delta); } /* update values of other basic variables depending on xN[q] */ for (i = 1; i <= m; i++) { if (i == p) continue; /* xB.new[i] = xB[i] + alfa[i,q] * delta xN[q] */ if (mpq_sgn(aq[i]) == 0) continue; mpq_mul(temp, aq[i], ssx->delta); mpq_add(bbar[i], bbar[i], temp); }#if 1 /* update value of the objective function */ /* z.new = z + d[q] * delta xN[q] */ mpq_mul(temp, cbar[q], ssx->delta); mpq_add(bbar[0], bbar[0], temp);#endif mpq_clear(temp); return;}/*------------------------------------------------------------------------ ssx_update_pi - update simplex multipliers.---- This routine recomputes the vector of simplex multipliers for the-- adjacent basis. */void ssx_update_pi(SSX *ssx){ int m = ssx->m; int n = ssx->n; mpq_t *pi = ssx->pi; mpq_t *cbar = ssx->cbar; int p = ssx->p; int q = ssx->q; mpq_t *aq = ssx->aq; mpq_t *rho = ssx->rho; int i; mpq_t new_dq, temp; mpq_init(new_dq); mpq_init(temp); xassert(1 <= p && p <= m); xassert(1 <= q && q <= n); /* compute d[q] in the adjacent basis */ mpq_div(new_dq, cbar[q], aq[p]); /* update the vector of simplex multipliers */ for (i = 1; i <= m; i++) { if (mpq_sgn(rho[i]) == 0) continue; mpq_mul(temp, new_dq, rho[i]); mpq_sub(pi[i], pi[i], temp); } mpq_clear(new_dq); mpq_clear(temp); return;}/*----------------------------------------------------------------------// ssx_update_cbar - update reduced costs of non-basic variables.//// This routine recomputes the vector of reduced costs of non-basic// variables for the adjacent basis. */void ssx_update_cbar(SSX *ssx){ int m = ssx->m; int n = ssx->n; mpq_t *cbar = ssx->cbar; int p = ssx->p; int q = ssx->q; mpq_t *ap = ssx->ap; int j; mpq_t temp; mpq_init(temp); xassert(1 <= p && p <= m); xassert(1 <= q && q <= n); /* compute d[q] in the adjacent basis */ /* d.new[q] = d[q] / alfa[p,q] */ mpq_div(cbar[q], cbar[q], ap[q]); /* update reduced costs of other non-basic variables */ for (j = 1; j <= n; j++) { if (j == q) continue; /* d.new[j] = d[j] - (alfa[p,j] / alfa[p,q]) * d[q] */ if (mpq_sgn(ap[j]) == 0) continue; mpq_mul(temp, ap[j], cbar[q]); mpq_sub(cbar[j], cbar[j], temp); } mpq_clear(temp); return;}/*----------------------------------------------------------------------// ssx_change_basis - change current basis to adjacent one.//// This routine changes the current basis to the adjacent one swapping// basic variable xB[p] and non-basic variable xN[q]. */void ssx_change_basis(SSX *ssx){ int m = ssx->m; int n = ssx->n; int *type = ssx->type; int *stat = ssx->stat; int *Q_row = ssx->Q_row; int *Q_col = ssx->Q_col; int p = ssx->p; int q = ssx->q; int p_stat = ssx->p_stat; int k, kp, kq; if (p < 0) { /* special case: xN[q] goes to its opposite bound */ xassert(1 <= q && q <= n); k = Q_col[m+q]; /* x[k] = xN[q] */ xassert(type[k] == SSX_DB); switch (stat[k]) { case SSX_NL: stat[k] = SSX_NU; break; case SSX_NU: stat[k] = SSX_NL; break; default: xassert(stat != stat); } } else { /* xB[p] leaves the basis, xN[q] enters the basis */ xassert(1 <= p && p <= m); xassert(1 <= q && q <= n); kp = Q_col[p]; /* x[kp] = xB[p] */ kq = Q_col[m+q]; /* x[kq] = xN[q] */ /* check non-basic status of xB[p] which becomes xN[q] */ switch (type[kp]) { case SSX_FR: xassert(p_stat == SSX_NF); break; case SSX_LO: xassert(p_stat == SSX_NL); break; case SSX_UP: xassert(p_stat == SSX_NU); break; case SSX_DB: xassert(p_stat == SSX_NL || p_stat == SSX_NU); break; case SSX_FX: xassert(p_stat == SSX_NS); break; default: xassert(type != type); } /* swap xB[p] and xN[q] */ stat[kp] = (char)p_stat, stat[kq] = SSX_BS; Q_row[kp] = m+q, Q_row[kq] = p; Q_col[p] = kq, Q_col[m+q] = kp; /* update factorization of the basis matrix */ if (bfx_update(ssx->binv, p)) { if (ssx_factorize(ssx)) xassert(("Internal error: basis matrix is singular", 0)); } } return;}/*----------------------------------------------------------------------// ssx_delete - delete simplex solver workspace.//// This routine deletes the simplex solver workspace freeing all the// memory allocated to this object. */void ssx_delete(SSX *ssx){ int m = ssx->m; int n = ssx->n; int nnz = ssx->A_ptr[n+1]-1; int i, j, k; xfree(ssx->type); for (k = 1; k <= m+n; k++) mpq_clear(ssx->lb[k]); xfree(ssx->lb); for (k = 1; k <= m+n; k++) mpq_clear(ssx->ub[k]); xfree(ssx->ub); for (k = 0; k <= m+n; k++) mpq_clear(ssx->coef[k]); xfree(ssx->coef); xfree(ssx->A_ptr); xfree(ssx->A_ind); for (k = 1; k <= nnz; k++) mpq_clear(ssx->A_val[k]); xfree(ssx->A_val); xfree(ssx->stat); xfree(ssx->Q_row); xfree(ssx->Q_col); bfx_delete_binv(ssx->binv); for (i = 0; i <= m; i++) mpq_clear(ssx->bbar[i]); xfree(ssx->bbar); for (i = 1; i <= m; i++) mpq_clear(ssx->pi[i]); xfree(ssx->pi); for (j = 1; j <= n; j++) mpq_clear(ssx->cbar[j]); xfree(ssx->cbar); for (i = 1; i <= m; i++) mpq_clear(ssx->rho[i]); xfree(ssx->rho); for (j = 1; j <= n; j++) mpq_clear(ssx->ap[j]); xfree(ssx->ap); for (i = 1; i <= m; i++) mpq_clear(ssx->aq[i]); xfree(ssx->aq); mpq_clear(ssx->delta); xfree(ssx); return;}/* eof */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -