📄 glpssx01.c
字号:
/* glpssx01.c *//************************************************************************ This code is part of GLPK (GNU Linear Programming Kit).** Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,* Department for Applied Informatics, Moscow Aviation Institute,* Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.** GLPK is free software: you can redistribute it and/or modify it* under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** GLPK is distributed in the hope that it will be useful, but WITHOUT* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public* License for more details.** You should have received a copy of the GNU General Public License* along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#include "glplib.h"#include "glpssx.h"#define xfault xerror/*----------------------------------------------------------------------// ssx_create - create simplex solver workspace.//// This routine creates the workspace used by simplex solver routines,// and returns a pointer to it.//// Parameters m, n, and nnz specify, respectively, the number of rows,// columns, and non-zero constraint coefficients.//// This routine only allocates the memory for the workspace components,// so the workspace needs to be saturated by data. */SSX *ssx_create(int m, int n, int nnz){ SSX *ssx; int i, j, k; if (m < 1) xfault("ssx_create: m = %d; invalid number of rows\n", m); if (n < 1) xfault("ssx_create: n = %d; invalid number of columns\n", n); if (nnz < 0) xfault("ssx_create: nnz = %d; invalid number of non-zero const" "raint coefficients\n", nnz); ssx = xmalloc(sizeof(SSX)); ssx->m = m; ssx->n = n; ssx->type = xcalloc(1+m+n, sizeof(int)); ssx->lb = xcalloc(1+m+n, sizeof(mpq_t)); for (k = 1; k <= m+n; k++) mpq_init(ssx->lb[k]); ssx->ub = xcalloc(1+m+n, sizeof(mpq_t)); for (k = 1; k <= m+n; k++) mpq_init(ssx->ub[k]); ssx->coef = xcalloc(1+m+n, sizeof(mpq_t)); for (k = 0; k <= m+n; k++) mpq_init(ssx->coef[k]); ssx->A_ptr = xcalloc(1+n+1, sizeof(int)); ssx->A_ptr[n+1] = nnz+1; ssx->A_ind = xcalloc(1+nnz, sizeof(int)); ssx->A_val = xcalloc(1+nnz, sizeof(mpq_t)); for (k = 1; k <= nnz; k++) mpq_init(ssx->A_val[k]); ssx->stat = xcalloc(1+m+n, sizeof(int)); ssx->Q_row = xcalloc(1+m+n, sizeof(int)); ssx->Q_col = xcalloc(1+m+n, sizeof(int)); ssx->binv = bfx_create_binv(); ssx->bbar = xcalloc(1+m, sizeof(mpq_t)); for (i = 0; i <= m; i++) mpq_init(ssx->bbar[i]); ssx->pi = xcalloc(1+m, sizeof(mpq_t)); for (i = 1; i <= m; i++) mpq_init(ssx->pi[i]); ssx->cbar = xcalloc(1+n, sizeof(mpq_t)); for (j = 1; j <= n; j++) mpq_init(ssx->cbar[j]); ssx->rho = xcalloc(1+m, sizeof(mpq_t)); for (i = 1; i <= m; i++) mpq_init(ssx->rho[i]); ssx->ap = xcalloc(1+n, sizeof(mpq_t)); for (j = 1; j <= n; j++) mpq_init(ssx->ap[j]); ssx->aq = xcalloc(1+m, sizeof(mpq_t)); for (i = 1; i <= m; i++) mpq_init(ssx->aq[i]); mpq_init(ssx->delta); return ssx;}/*----------------------------------------------------------------------// ssx_factorize - factorize the current basis matrix.//// This routine computes factorization of the current basis matrix B// and returns the singularity flag. If the matrix B is non-singular,// the flag is zero, otherwise non-zero. */static int basis_col(void *info, int j, int ind[], mpq_t val[]){ /* this auxiliary routine provides row indices and numeric values of non-zero elements in j-th column of the matrix B */ SSX *ssx = info; int m = ssx->m; int n = ssx->n; int *A_ptr = ssx->A_ptr; int *A_ind = ssx->A_ind; mpq_t *A_val = ssx->A_val; int *Q_col = ssx->Q_col; int k, len, ptr; xassert(1 <= j && j <= m); k = Q_col[j]; /* x[k] = xB[j] */ xassert(1 <= k && k <= m+n); /* j-th column of the matrix B is k-th column of the augmented constraint matrix (I | -A) */ if (k <= m) { /* it is a column of the unity matrix I */ len = 1, ind[1] = k, mpq_set_si(val[1], 1, 1); } else { /* it is a column of the original constraint matrix -A */ len = 0; for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) { len++; ind[len] = A_ind[ptr]; mpq_neg(val[len], A_val[ptr]); } } return len;}int ssx_factorize(SSX *ssx){ int ret; ret = bfx_factorize(ssx->binv, ssx->m, basis_col, ssx); return ret;}/*----------------------------------------------------------------------// ssx_get_xNj - determine value of non-basic variable.//// This routine determines the value of non-basic variable xN[j] in the// current basic solution defined as follows://// 0, if xN[j] is free variable// lN[j], if xN[j] is on its lower bound// uN[j], if xN[j] is on its upper bound// lN[j] = uN[j], if xN[j] is fixed variable//// where lN[j] and uN[j] are lower and upper bounds of xN[j]. */void ssx_get_xNj(SSX *ssx, int j, mpq_t x){ int m = ssx->m; int n = ssx->n; mpq_t *lb = ssx->lb; mpq_t *ub = ssx->ub; int *stat = ssx->stat; int *Q_col = ssx->Q_col; int k; xassert(1 <= j && j <= n); k = Q_col[m+j]; /* x[k] = xN[j] */ xassert(1 <= k && k <= m+n); switch (stat[k]) { case SSX_NL: /* xN[j] is on its lower bound */ mpq_set(x, lb[k]); break; case SSX_NU: /* xN[j] is on its upper bound */ mpq_set(x, ub[k]); break; case SSX_NF: /* xN[j] is free variable */ mpq_set_si(x, 0, 1); break; case SSX_NS: /* xN[j] is fixed variable */ mpq_set(x, lb[k]); break; default: xassert(stat != stat); } return;}/*----------------------------------------------------------------------// ssx_eval_bbar - compute values of basic variables.//// This routine computes values of basic variables xB in the current// basic solution as follows://// beta = - inv(B) * N * xN,//// where B is the basis matrix, N is the matrix of non-basic columns,// xN is a vector of current values of non-basic variables. */void ssx_eval_bbar(SSX *ssx){ int m = ssx->m; int n = ssx->n; mpq_t *coef = ssx->coef; int *A_ptr = ssx->A_ptr; int *A_ind = ssx->A_ind; mpq_t *A_val = ssx->A_val; int *Q_col = ssx->Q_col; mpq_t *bbar = ssx->bbar; int i, j, k, ptr; mpq_t x, temp; mpq_init(x); mpq_init(temp); /* bbar := 0 */ for (i = 1; i <= m; i++) mpq_set_si(bbar[i], 0, 1); /* bbar := - N * xN = - N[1] * xN[1] - ... - N[n] * xN[n] */ for (j = 1; j <= n; j++) { ssx_get_xNj(ssx, j, x); if (mpq_sgn(x) == 0) continue; k = Q_col[m+j]; /* x[k] = xN[j] */ if (k <= m) { /* N[j] is a column of the unity matrix I */ mpq_sub(bbar[k], bbar[k], x); } else { /* N[j] is a column of the original constraint matrix -A */ for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) { mpq_mul(temp, A_val[ptr], x); mpq_add(bbar[A_ind[ptr]], bbar[A_ind[ptr]], temp); } } } /* bbar := inv(B) * bbar */ bfx_ftran(ssx->binv, bbar, 0);#if 1 /* compute value of the objective function */ /* bbar[0] := c[0] */ mpq_set(bbar[0], coef[0]); /* bbar[0] := bbar[0] + sum{i in B} cB[i] * xB[i] */ for (i = 1; i <= m; i++) { k = Q_col[i]; /* x[k] = xB[i] */ if (mpq_sgn(coef[k]) == 0) continue; mpq_mul(temp, coef[k], bbar[i]); mpq_add(bbar[0], bbar[0], temp); } /* bbar[0] := bbar[0] + sum{j in N} cN[j] * xN[j] */ for (j = 1; j <= n; j++) { k = Q_col[m+j]; /* x[k] = xN[j] */ if (mpq_sgn(coef[k]) == 0) continue; ssx_get_xNj(ssx, j, x); mpq_mul(temp, coef[k], x); mpq_add(bbar[0], bbar[0], temp); }#endif mpq_clear(x); mpq_clear(temp); return;}/*----------------------------------------------------------------------// ssx_eval_pi - compute values of simplex multipliers.//// This routine computes values of simplex multipliers (shadow prices)// pi in the current basic solution as follows://// pi = inv(B') * cB,//// where B' is a matrix transposed to the basis matrix B, cB is a vector// of objective coefficients at basic variables xB. */void ssx_eval_pi(SSX *ssx){ int m = ssx->m; mpq_t *coef = ssx->coef; int *Q_col = ssx->Q_col; mpq_t *pi = ssx->pi; int i; /* pi := cB */ for (i = 1; i <= m; i++) mpq_set(pi[i], coef[Q_col[i]]); /* pi := inv(B') * cB */ bfx_btran(ssx->binv, pi); return;}/*----------------------------------------------------------------------// ssx_eval_dj - compute reduced cost of non-basic variable.//// This routine computes reduced cost d[j] of non-basic variable xN[j]// in the current basic solution as follows://// d[j] = cN[j] - N[j] * pi,//// where cN[j] is an objective coefficient at xN[j], N[j] is a column// of the augmented constraint matrix (I | -A) corresponding to xN[j],// pi is the vector of simplex multipliers (shadow prices). */void ssx_eval_dj(SSX *ssx, int j, mpq_t dj){ int m = ssx->m; int n = ssx->n; mpq_t *coef = ssx->coef; int *A_ptr = ssx->A_ptr; int *A_ind = ssx->A_ind; mpq_t *A_val = ssx->A_val; int *Q_col = ssx->Q_col; mpq_t *pi = ssx->pi; int k, ptr, end; mpq_t temp; mpq_init(temp); xassert(1 <= j && j <= n); k = Q_col[m+j]; /* x[k] = xN[j] */ xassert(1 <= k && k <= m+n); /* j-th column of the matrix N is k-th column of the augmented constraint matrix (I | -A) */ if (k <= m) { /* it is a column of the unity matrix I */ mpq_sub(dj, coef[k], pi[k]); } else { /* it is a column of the original constraint matrix -A */ mpq_set(dj, coef[k]); for (ptr = A_ptr[k-m], end = A_ptr[k-m+1]; ptr < end; ptr++) { mpq_mul(temp, A_val[ptr], pi[A_ind[ptr]]); mpq_add(dj, dj, temp); } } mpq_clear(temp); return;}/*----------------------------------------------------------------------// ssx_eval_cbar - compute reduced costs of all non-basic variables.//// This routine computes the vector of reduced costs pi in the current// basic solution for all non-basic variables, including fixed ones. */void ssx_eval_cbar(SSX *ssx){ int n = ssx->n; mpq_t *cbar = ssx->cbar; int j; for (j = 1; j <= n; j++) ssx_eval_dj(ssx, j, cbar[j]); return;}/*----------------------------------------------------------------------// ssx_eval_rho - compute p-th row of the inverse.//// This routine computes p-th row of the matrix inv(B), where B is the// current basis matrix.//// p-th row of the inverse is computed using the following formula://// rho = inv(B') * e[p],//// where B' is a matrix transposed to B, e[p] is a unity vector, which// contains one in p-th position. */void ssx_eval_rho(SSX *ssx){ int m = ssx->m; int p = ssx->p; mpq_t *rho = ssx->rho; int i; xassert(1 <= p && p <= m); /* rho := 0 */ for (i = 1; i <= m; i++) mpq_set_si(rho[i], 0, 1); /* rho := e[p] */ mpq_set_si(rho[p], 1, 1); /* rho := inv(B') * rho */ bfx_btran(ssx->binv, rho); return;}/*----------------------------------------------------------------------// ssx_eval_row - compute pivot row of the simplex table.//// This routine computes p-th (pivot) row of the current simplex table// A~ = - inv(B) * N using the following formula://// A~[p] = - N' * inv(B') * e[p] = - N' * rho[p],//// where N' is a matrix transposed to the matrix N, rho[p] is p-th row// of the inverse inv(B). */void ssx_eval_row(SSX *ssx){ int m = ssx->m; int n = ssx->n; int *A_ptr = ssx->A_ptr; int *A_ind = ssx->A_ind; mpq_t *A_val = ssx->A_val; int *Q_col = ssx->Q_col; mpq_t *rho = ssx->rho; mpq_t *ap = ssx->ap; int j, k, ptr; mpq_t temp; mpq_init(temp); for (j = 1; j <= n; j++) { /* ap[j] := - N'[j] * rho (inner product) */ k = Q_col[m+j]; /* x[k] = xN[j] */ if (k <= m) mpq_neg(ap[j], rho[k]); else { mpq_set_si(ap[j], 0, 1); for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) { mpq_mul(temp, A_val[ptr], rho[A_ind[ptr]]); mpq_add(ap[j], ap[j], temp); } } } mpq_clear(temp); return;}/*----------------------------------------------------------------------// ssx_eval_col - compute pivot column of the simplex table.//// This routine computes q-th (pivot) column of the current simplex// table A~ = - inv(B) * N using the following formula://// A~[q] = - inv(B) * N[q],//// where N[q] is q-th column of the matrix N corresponding to chosen// non-basic variable xN[q]. */void ssx_eval_col(SSX *ssx){ int m = ssx->m; int n = ssx->n; int *A_ptr = ssx->A_ptr; int *A_ind = ssx->A_ind; mpq_t *A_val = ssx->A_val; int *Q_col = ssx->Q_col; int q = ssx->q; mpq_t *aq = ssx->aq; int i, k, ptr; xassert(1 <= q && q <= n); /* aq := 0 */ for (i = 1; i <= m; i++) mpq_set_si(aq[i], 0, 1); /* aq := N[q] */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -