⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glpios05.c

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 C
字号:
/* glpios05.c (Gomory's mixed integer cut generator) *//************************************************************************  This code is part of GLPK (GNU Linear Programming Kit).**  Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,*  Department for Applied Informatics, Moscow Aviation Institute,*  Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.**  GLPK is free software: you can redistribute it and/or modify it*  under the terms of the GNU General Public License as published by*  the Free Software Foundation, either version 3 of the License, or*  (at your option) any later version.**  GLPK is distributed in the hope that it will be useful, but WITHOUT*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public*  License for more details.**  You should have received a copy of the GNU General Public License*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#include "glpios.h"/************************************************************************  NAME**  ios_gmi_gen - generate Gomory's mixed integer cuts.**  SYNOPSIS**  #include "glpios.h"*  void ios_gmi_gen(glp_tree *tree, IOSPOOL *pool);**  DESCRIPTION**  The routine ios_gmi_gen generates Gomory's mixed integer cuts for*  the current point and adds them to the cut pool. */#define MAXCUTS 50/* maximal number of cuts to be generated for one round */struct worka{     /* Gomory's cut generator working area */      int *ind; /* int ind[1+n]; */      double *val; /* double val[1+n]; */      double *phi; /* double phi[1+m+n]; */};#define f(x) ((x) - floor(x))/* compute fractional part of x */static void gen_cut(glp_tree *tree, struct worka *worka, int j){     /* this routine tries to generate Gomory's mixed integer cut for         specified structural variable x[m+j] of integer kind, which is         basic and has fractional value in optimal solution to current         LP relaxation */      glp_prob *mip = tree->mip;      int m = mip->m;      int n = mip->n;      int *ind = worka->ind;      double *val = worka->val;      double *phi = worka->phi;      int i, k, len, kind, stat;      double lb, ub, alfa, beta, ksi, phi1, rhs;      /* compute row of the simplex tableau, which (row) corresponds         to specified basic variable xB[i] = x[m+j]; see (23) */      len = glp_eval_tab_row(mip, m+j, ind, val);      /* determine beta[i], which a value of xB[i] in optimal solution         to current LP relaxation; note that this value is the same as         if it would be computed with formula (27); it is assumed that         beta[i] is fractional enough */      beta = mip->col[j]->prim;      /* compute cut coefficients phi and right-hand side rho, which         correspond to formula (30); dense format is used, because rows         of the simplex tableau is usually dense */      for (k = 1; k <= m+n; k++) phi[k] = 0.0;      rhs = f(beta); /* initial value of rho; see (28), (32) */      for (j = 1; j <= len; j++)      {  /* determine original number of non-basic variable xN[j] */         k = ind[j];         xassert(1 <= k && k <= m+n);         /* determine the kind, bounds and current status of xN[j] in            optimal solution to LP relaxation */         if (k <= m)         {  /* auxiliary variable */            GLPROW *row = mip->row[k];            kind = GLP_CV;            lb = row->lb;            ub = row->ub;            stat = row->stat;         }         else         {  /* structural variable */            GLPCOL *col = mip->col[k-m];            kind = col->kind;            lb = col->lb;            ub = col->ub;            stat = col->stat;         }         /* xN[j] cannot be basic */         xassert(stat != GLP_BS);         /* determine row coefficient ksi[i,j] at xN[j]; see (23) */         ksi = val[j];         /* if ksi[i,j] is too large in the magnitude, do not generate            the cut */         if (fabs(ksi) > 1e+05) goto fini;         /* if ksi[i,j] is too small in the magnitude, skip it */         if (fabs(ksi) < 1e-10) goto skip;         /* compute row coefficient alfa[i,j] at y[j]; see (26) */         switch (stat)         {  case GLP_NF:               /* xN[j] is free (unbounded) having non-zero ksi[i,j];                  do not generate the cut */               goto fini;            case GLP_NL:               /* xN[j] has active lower bound */               alfa = - ksi;               break;            case GLP_NU:               /* xN[j] has active upper bound */               alfa = + ksi;               break;            case GLP_NS:               /* xN[j] is fixed; skip it */               goto skip;            default:               xassert(stat != stat);         }         /* compute cut coefficient phi'[j] at y[j]; see (21), (28) */         switch (kind)         {  case GLP_IV:               /* y[j] is integer */               if (fabs(alfa - floor(alfa + 0.5)) < 1e-10)               {  /* alfa[i,j] is close to nearest integer; skip it */                  goto skip;               }               else if (f(alfa) <= f(beta))                  phi1 = f(alfa);               else                  phi1 = (f(beta) / (1.0 - f(beta))) * (1.0 - f(alfa));               break;            case GLP_CV:               /* y[j] is continuous */               if (alfa >= 0.0)                  phi1 = + alfa;               else                  phi1 = (f(beta) / (1.0 - f(beta))) * (- alfa);               break;            default:               xassert(kind != kind);         }         /* compute cut coefficient phi[j] at xN[j] and update right-            hand side rho; see (31), (32) */         switch (stat)         {  case GLP_NL:               /* xN[j] has active lower bound */               phi[k] = + phi1;               rhs += phi1 * lb;               break;            case GLP_NU:               /* xN[j] has active upper bound */               phi[k] = - phi1;               rhs -= phi1 * ub;               break;            default:               xassert(stat != stat);         }skip:    ;      }      /* now the cut has the form sum_k phi[k] * x[k] >= rho, where cut         coefficients are stored in the array phi in dense format;         x[1,...,m] are auxiliary variables, x[m+1,...,m+n] are struc-         tural variables; see (30) */      /* eliminate auxiliary variables in order to express the cut only         through structural variables; see (33) */      for (i = 1; i <= m; i++)      {  GLPROW *row;         GLPAIJ *aij;         if (fabs(phi[i]) < 1e-10) continue;         /* auxiliary variable x[i] has non-zero cut coefficient */         row = mip->row[i];         /* x[i] cannot be fixed */         xassert(row->type != GLP_FX);         /* substitute x[i] = sum_j a[i,j] * x[m+j] */         for (aij = row->ptr; aij != NULL; aij = aij->r_next)            phi[m+aij->col->j] += phi[i] * aij->val;      }      /* convert the final cut to sparse format and substitute fixed         (structural) variables */      len = 0;      for (j = 1; j <= n; j++)      {  GLPCOL *col;         if (fabs(phi[m+j]) < 1e-10) continue;         /* structural variable x[m+j] has non-zero cut coefficient */         col = mip->col[j];         if (col->type == GLP_FX)         {  /* eliminate x[m+j] */            rhs -= phi[m+j] * col->lb;         }         else         {  len++;            ind[len] = j;            val[len] = phi[m+j];         }      }      if (fabs(rhs) < 1e-12) rhs = 0.0;      /* if the cut inequality seems to be badly scaled, reject it to         avoid numeric difficulties */      for (k = 1; k <= len; k++)      {  if (fabs(val[k]) < 1e-03) goto fini;         if (fabs(val[k]) > 1e+03) goto fini;      }      /* add the cut to the cut pool for further consideration */#if 0      ios_add_cut_row(tree, pool, GLP_RF_GMI, len, ind, val, GLP_LO,         rhs);#else      glp_ios_add_row(tree, NULL, GLP_RF_GMI, 0, len, ind, val, GLP_LO,         rhs);#endiffini: return;}struct var { int j; double f; };static int fcmp(const void *p1, const void *p2){     const struct var *v1 = p1, *v2 = p2;      if (v1->f > v2->f) return -1;      if (v1->f < v2->f) return +1;      return 0;}void ios_gmi_gen(glp_tree *tree){     /* main routine to generate Gomory's cuts */      glp_prob *mip = tree->mip;      int m = mip->m;      int n = mip->n;      struct var *var;      int k, nv, j, size;      struct worka _worka, *worka = &_worka;      /* allocate working arrays */      var = xcalloc(1+n, sizeof(struct var));      worka->ind = xcalloc(1+n, sizeof(int));      worka->val = xcalloc(1+n, sizeof(double));      worka->phi = xcalloc(1+m+n, sizeof(double));      /* build the list of integer structural variables, which are         basic and have fractional value in optimal solution to current         LP relaxation */      nv = 0;      for (j = 1; j <= n; j++)      {  GLPCOL *col = mip->col[j];         double frac;         if (col->kind != GLP_IV) continue;         if (col->type == GLP_FX) continue;         if (col->stat != GLP_BS) continue;         frac = f(col->prim);         if (!(0.05 <= frac && frac <= 0.95)) continue;         /* add variable to the list */         nv++, var[nv].j = j, var[nv].f = frac;      }      /* order the list by descending fractionality */      qsort(&var[1], nv, sizeof(struct var), fcmp);      /* try to generate cuts by one for each variable in the list, but         not more than MAXCUTS cuts */      size = glp_ios_pool_size(tree);      for (k = 1; k <= nv; k++)      {  if (glp_ios_pool_size(tree) - size >= MAXCUTS) break;         gen_cut(tree, worka, var[k].j);      }      /* free working arrays */      xfree(var);      xfree(worka->ind);      xfree(worka->val);      xfree(worka->phi);      return;}/* eof */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -