📄 glplpx08.c
字号:
/* glplpx08.c (bounds sensitivity analysis routine) *//************************************************************************ This code is part of GLPK (GNU Linear Programming Kit).** Author: Brady Hunsaker <bkh@member.fsf.org>.** Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,* Department for Applied Informatics, Moscow Aviation Institute,* Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.** GLPK is free software: you can redistribute it and/or modify it* under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** GLPK is distributed in the hope that it will be useful, but WITHOUT* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public* License for more details.** You should have received a copy of the GNU General Public License* along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#define _GLPSTD_ERRNO#define _GLPSTD_STDIO#include "glpapi.h"#include "glplib.h"/*------------------------------------------------------------------------ lpx_print_sens_bnds - write bounds sensitivity information.---- *Synopsis*---- #include "glplpx.h"-- int lpx_print_sens_bnds(LPX *lp, char *fname);---- *Description*---- The routine lpx_print_sens_bnds writes the bounds for objective-- coefficients, right-hand-sides of constraints, and variable bounds-- for which the current optimal basic solution remains optimal (for LP-- only).---- The LP is given by the pointer lp, and the output is written to the-- file specified by fname. The current contents of the file will be-- overwritten.---- Information reported by the routine lpx_print_sens_bnds is intended-- mainly for visual analysis.---- *Returns*---- If the operation was successful, the routine returns zero. Otherwise-- the routine prints an error message and returns non-zero. */int lpx_print_sens_bnds(LPX *lp, const char *fname){ FILE *fp = NULL; int what, round; xprintf("lpx_print_sens_bnds: writing LP problem solution bounds " "to `%s'...\n", fname);#if 1 /* added by mao */ /* this routine needs factorization of the current basis matrix which, however, does not exist if the basic solution was obtained by the lp presolver; therefore we should warm up the basis to be sure that the factorization is valid (note that if the factorization exists, lpx_warm_up does nothing) */ lpx_warm_up(lp);#endif#if 0 /* 21/XII-2003 by mao */ if (lp->b_stat == LPX_B_UNDEF)#else if (!lpx_is_b_avail(lp))#endif { xprintf("lpx_print_sens_bnds: basis information not available " "(may be a presolve issue)\n"); goto fail; } fp = fopen(fname, "w"); if (fp == NULL) { xprintf("lpx_print_sens_bnds: can't create `%s' - %s\n", fname, strerror(errno)); goto fail; } /* problem name */ { const char *name; name = lpx_get_prob_name(lp); if (name == NULL) name = ""; fprintf(fp, "%-12s%s\n", "Problem:", name); } /* number of rows (auxiliary variables) */ { int nr; nr = lpx_get_num_rows(lp); fprintf(fp, "%-12s%d\n", "Rows:", nr); } /* number of columns (structural variables) */ { int nc; nc = lpx_get_num_cols(lp); fprintf(fp, "%-12s%d\n", "Columns:", nc); } /* number of non-zeros (constraint coefficients) */ { int nz; nz = lpx_get_num_nz(lp); fprintf(fp, "%-12s%d\n", "Non-zeros:", nz); } /* solution status */ { int status; status = lpx_get_status(lp); fprintf(fp, "%-12s%s\n", "Status:", status == LPX_OPT ? "OPTIMAL" : status == LPX_FEAS ? "FEASIBLE" : status == LPX_INFEAS ? "INFEASIBLE (INTERMEDIATE)" : status == LPX_NOFEAS ? "INFEASIBLE (FINAL)" : status == LPX_UNBND ? "UNBOUNDED" : status == LPX_UNDEF ? "UNDEFINED" : "???"); } /* explanation/warning */ { fprintf(fp, "\nExplanation: This file presents amounts by whi" "ch objective coefficients,\n"); fprintf(fp, "constraint bounds, and variable bounds may be cha" "nged in the original problem\n"); fprintf(fp, "while the optimal basis remains the same. Note t" "hat the optimal solution\n"); fprintf(fp, "and objective value may change even though the ba" "sis remains the same.\n"); fprintf(fp, "These bounds assume that all parameters remain fi" "xed except the one in\n"); fprintf(fp, "question. If more than one parameter is changed," " it is possible for the\n"); fprintf(fp, "optimal basis to change even though each paramete" "r stays within its bounds.\n"); fprintf(fp, "For more details, consult a text on linear progra" "mming.\n"); } /* Sensitivity ranges if solution was optimal */ { int status; status = lpx_get_status(lp); if (status == LPX_OPT) { int i,j,k,m,n; int dir; double max_inc, max_dec; int *index; double *val; fprintf(fp, "\nObjective Coefficient Analysis\n"); fprintf(fp, " No. Column name St Value Max incr" "ease Max decrease\n"); fprintf(fp, "------ ------------ -- ------------- ---------" "---- ------------- \n"); n = lpx_get_num_cols(lp); m = lpx_get_num_rows(lp); dir = lpx_get_obj_dir(lp); /* allocate memory for index and val arrays */ index = xcalloc(1+n+m, sizeof(int)); val = xcalloc(1+n+m, sizeof(double)); for (j = 1; j <= n; j++) { const char *name; int typx, tagx; double lb, ub, vx, dx; name = lpx_get_col_name(lp, j); if (name == NULL) name = ""; lpx_get_col_bnds(lp, j, &typx, &lb, &ub);#if 0 /* 21/XII-2003 by mao */ round = lp->round, lp->round = 1; lpx_get_col_info(lp, j, &tagx, &vx, &dx); lp->round = round;#else round = lpx_get_int_parm(lp, LPX_K_ROUND); lpx_set_int_parm(lp, LPX_K_ROUND, 1); lpx_get_col_info(lp, j, &tagx, &vx, &dx); lpx_set_int_parm(lp, LPX_K_ROUND, round);#endif /* row/column ordinal number */ fprintf(fp, "%6d ", j); /* row column/name */ if (strlen(name) <= 12) fprintf(fp, "%-12s ", name); else fprintf(fp, "%s\n%20s", name, ""); /* row/column status */ fprintf(fp, "%s ", tagx == LPX_BS ? "B " : tagx == LPX_NL ? "NL" : tagx == LPX_NU ? "NU" : tagx == LPX_NF ? "NF" : tagx == LPX_NS ? "NS" : "??"); /* objective coefficient */ fprintf(fp, "%13.6g ", lpx_get_obj_coef(lp, j)); if (tagx == LPX_NL) { if (dir==LPX_MIN) { /* reduced cost must be positive */ max_inc = DBL_MAX; /* really represents infinity */ max_dec = dx; } else { /* reduced cost must be negative */ max_inc = -dx; max_dec = DBL_MAX; /* means infinity */ } } if (tagx == LPX_NU) { if (dir==LPX_MIN) { /* reduced cost must be negative */ max_inc = -dx; max_dec = DBL_MAX; } else { max_inc = DBL_MAX; max_dec = dx; } } if (tagx == LPX_NF) { /* can't change nonbasic free variables' cost */ max_inc = 0.0; max_dec = 0.0; } if (tagx == LPX_NS) { /* doesn't matter what happens to the cost */ max_inc = DBL_MAX; max_dec = DBL_MAX; } if (tagx == LPX_BS) { int len; /* We need to see how this objective coefficient affects reduced costs of other variables */ len = lpx_eval_tab_row(lp, m+j, index, val); max_inc = DBL_MAX; max_dec = DBL_MAX; for (i = 1; i <= len; i++) { /*int stat;*/ int tagx2; double vx2, dx2; double delta; if (index[i]>m) lpx_get_col_info(lp, index[i]-m, &tagx2, &vx2, &dx2); else lpx_get_row_info(lp, index[i], &tagx2, &vx2, &dx2); if (tagx2 == LPX_NL) { if (val[i] != 0.0) { delta = dx2 / val[i]; if (delta < 0 && -delta < max_inc) max_inc = -delta; else if (delta >0 && delta < max_dec) max_dec = delta; } } if (tagx2 == LPX_NU) { if (val[i] != 0.0) { delta = dx2 / val[i]; if (delta < 0 && -delta < max_inc) max_inc = -delta; else if (delta > 0 && delta < max_dec) max_dec = delta; } } if (tagx2 == LPX_NF) { if (val[i] != 0.0) { max_inc = 0.0; max_dec = 0.0; } } } } if (max_inc == -0.0) max_inc = 0.0; if (max_dec == -0.0) max_dec = 0.0; if (max_inc == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_inc < 1.0e-12 && max_inc > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_inc); if (max_dec == DBL_MAX) fprintf(fp, "%13s ", "infinity"); else if (max_dec < 1.0e-12 && max_dec > 0) fprintf(fp, "%13s ", "< eps"); else fprintf(fp, "%13.6g ", max_dec); fprintf(fp, "\n"); } for (what = 1; what <= 2; what++) { int ij, mn; fprintf(fp, "\n"); fprintf(fp, "%s Analysis\n", what==1? "Constraint Bounds":"Variable Bounds"); fprintf(fp, " No. %12s St Value Max increase " " Max decrease\n", what==1 ? " Row name":"Column name"); fprintf(fp, "------ ------------ -- ------------- ------"
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -