📄 glplux.c
字号:
/* glplux.c *//************************************************************************ This code is part of GLPK (GNU Linear Programming Kit).** Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,* Department for Applied Informatics, Moscow Aviation Institute,* Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.** GLPK is free software: you can redistribute it and/or modify it* under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** GLPK is distributed in the hope that it will be useful, but WITHOUT* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public* License for more details.** You should have received a copy of the GNU General Public License* along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#include "glplux.h"#define xfault xerror#define dmp_create_poolx(size) dmp_create_pool()/*----------------------------------------------------------------------// lux_create - create LU-factorization.//// SYNOPSIS//// #include "glplux.h"// LUX *lux_create(int n);//// DESCRIPTION//// The routine lux_create creates LU-factorization data structure for// a matrix of the order n. Initially the factorization corresponds to// the unity matrix (F = V = P = Q = I, so A = I).//// RETURNS//// The routine returns a pointer to the created LU-factorization data// structure, which represents the unity matrix of the order n. */LUX *lux_create(int n){ LUX *lux; int k; if (n < 1) xfault("lux_create: n = %d; invalid parameter\n", n); lux = xmalloc(sizeof(LUX)); lux->n = n; lux->pool = dmp_create_poolx(sizeof(LUXELM)); lux->F_row = xcalloc(1+n, sizeof(LUXELM *)); lux->F_col = xcalloc(1+n, sizeof(LUXELM *)); lux->V_piv = xcalloc(1+n, sizeof(mpq_t)); lux->V_row = xcalloc(1+n, sizeof(LUXELM *)); lux->V_col = xcalloc(1+n, sizeof(LUXELM *)); lux->P_row = xcalloc(1+n, sizeof(int)); lux->P_col = xcalloc(1+n, sizeof(int)); lux->Q_row = xcalloc(1+n, sizeof(int)); lux->Q_col = xcalloc(1+n, sizeof(int)); for (k = 1; k <= n; k++) { lux->F_row[k] = lux->F_col[k] = NULL; mpq_init(lux->V_piv[k]); mpq_set_si(lux->V_piv[k], 1, 1); lux->V_row[k] = lux->V_col[k] = NULL; lux->P_row[k] = lux->P_col[k] = k; lux->Q_row[k] = lux->Q_col[k] = k; } lux->rank = n; return lux;}/*----------------------------------------------------------------------// initialize - initialize LU-factorization data structures.//// This routine initializes data structures for subsequent computing// the LU-factorization of a given matrix A, which is specified by the// formal routine col. On exit V = A and F = P = Q = I, where I is the// unity matrix. */static void initialize(LUX *lux, int (*col)(void *info, int j, int ind[], mpq_t val[]), void *info, LUXWKA *wka){ int n = lux->n; DMP *pool = lux->pool; LUXELM **F_row = lux->F_row; LUXELM **F_col = lux->F_col; mpq_t *V_piv = lux->V_piv; LUXELM **V_row = lux->V_row; LUXELM **V_col = lux->V_col; int *P_row = lux->P_row; int *P_col = lux->P_col; int *Q_row = lux->Q_row; int *Q_col = lux->Q_col; int *R_len = wka->R_len; int *R_head = wka->R_head; int *R_prev = wka->R_prev; int *R_next = wka->R_next; int *C_len = wka->C_len; int *C_head = wka->C_head; int *C_prev = wka->C_prev; int *C_next = wka->C_next; LUXELM *fij, *vij; int i, j, k, len, *ind; mpq_t *val; /* F := I */ for (i = 1; i <= n; i++) { while (F_row[i] != NULL) { fij = F_row[i], F_row[i] = fij->r_next; mpq_clear(fij->val); dmp_free_atom(pool, fij, sizeof(LUXELM)); } } for (j = 1; j <= n; j++) F_col[j] = NULL; /* V := 0 */ for (k = 1; k <= n; k++) mpq_set_si(V_piv[k], 0, 1); for (i = 1; i <= n; i++) { while (V_row[i] != NULL) { vij = V_row[i], V_row[i] = vij->r_next; mpq_clear(vij->val); dmp_free_atom(pool, vij, sizeof(LUXELM)); } } for (j = 1; j <= n; j++) V_col[j] = NULL; /* V := A */ ind = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(mpq_t)); for (k = 1; k <= n; k++) mpq_init(val[k]); for (j = 1; j <= n; j++) { /* obtain j-th column of matrix A */ len = col(info, j, ind, val); if (!(0 <= len && len <= n)) xfault("lux_decomp: j = %d: len = %d; invalid column length" "\n", j, len); /* copy elements of j-th column to matrix V */ for (k = 1; k <= len; k++) { /* get row index of a[i,j] */ i = ind[k]; if (!(1 <= i && i <= n)) xfault("lux_decomp: j = %d: i = %d; row index out of ran" "ge\n", j, i); /* check for duplicate indices */ if (V_row[i] != NULL && V_row[i]->j == j) xfault("lux_decomp: j = %d: i = %d; duplicate row indice" "s not allowed\n", j, i); /* check for zero value */ if (mpq_sgn(val[k]) == 0) xfault("lux_decomp: j = %d: i = %d; zero elements not al" "lowed\n", j, i); /* add new element v[i,j] = a[i,j] to V */ vij = dmp_get_atom(pool, sizeof(LUXELM)); vij->i = i, vij->j = j; mpq_init(vij->val); mpq_set(vij->val, val[k]); vij->r_prev = NULL; vij->r_next = V_row[i]; vij->c_prev = NULL; vij->c_next = V_col[j]; if (vij->r_next != NULL) vij->r_next->r_prev = vij; if (vij->c_next != NULL) vij->c_next->c_prev = vij; V_row[i] = V_col[j] = vij; } } xfree(ind); for (k = 1; k <= n; k++) mpq_clear(val[k]); xfree(val); /* P := Q := I */ for (k = 1; k <= n; k++) P_row[k] = P_col[k] = Q_row[k] = Q_col[k] = k; /* the rank of A and V is not determined yet */ lux->rank = -1; /* initially the entire matrix V is active */ /* determine its row lengths */ for (i = 1; i <= n; i++) { len = 0; for (vij = V_row[i]; vij != NULL; vij = vij->r_next) len++; R_len[i] = len; } /* build linked lists of active rows */ for (len = 0; len <= n; len++) R_head[len] = 0; for (i = 1; i <= n; i++) { len = R_len[i]; R_prev[i] = 0; R_next[i] = R_head[len]; if (R_next[i] != 0) R_prev[R_next[i]] = i; R_head[len] = i; } /* determine its column lengths */ for (j = 1; j <= n; j++) { len = 0; for (vij = V_col[j]; vij != NULL; vij = vij->c_next) len++; C_len[j] = len; } /* build linked lists of active columns */ for (len = 0; len <= n; len++) C_head[len] = 0; for (j = 1; j <= n; j++) { len = C_len[j]; C_prev[j] = 0; C_next[j] = C_head[len]; if (C_next[j] != 0) C_prev[C_next[j]] = j; C_head[len] = j; } return;}/*----------------------------------------------------------------------// find_pivot - choose a pivot element.//// This routine chooses a pivot element v[p,q] in the active submatrix// of matrix U = P*V*Q.//// It is assumed that on entry the matrix U has the following partially// triangularized form://// 1 k n// 1 x x x x x x x x x x// . x x x x x x x x x// . . x x x x x x x x// . . . x x x x x x x// k . . . . * * * * * *// . . . . * * * * * *// . . . . * * * * * *// . . . . * * * * * *// . . . . * * * * * *// n . . . . * * * * * *//// where rows and columns k, k+1, ..., n belong to the active submatrix// (elements of the active submatrix are marked by '*').//// Since the matrix U = P*V*Q is not stored, the routine works with the// matrix V. It is assumed that the row-wise representation corresponds// to the matrix V, but the column-wise representation corresponds to// the active submatrix of the matrix V, i.e. elements of the matrix V,// which does not belong to the active submatrix, are missing from the// column linked lists. It is also assumed that each active row of the// matrix V is in the set R[len], where len is number of non-zeros in// the row, and each active column of the matrix V is in the set C[len],// where len is number of non-zeros in the column (in the latter case// only elements of the active submatrix are counted; such elements are// marked by '*' on the figure above).//// Due to exact arithmetic any non-zero element of the active submatrix// can be chosen as a pivot. However, to keep sparsity of the matrix V// the routine uses Markowitz strategy, trying to choose such element// v[p,q], which has smallest Markowitz cost (nr[p]-1) * (nc[q]-1),// where nr[p] and nc[q] are the number of non-zero elements, resp., in// p-th row and in q-th column of the active submatrix.//// In order to reduce the search, i.e. not to walk through all elements// of the active submatrix, the routine exploits a technique proposed by// I.Duff. This technique is based on using the sets R[len] and C[len]// of active rows and columns.//// On exit the routine returns a pointer to a pivot v[p,q] chosen, or// NULL, if the active submatrix is empty. */static LUXELM *find_pivot(LUX *lux, LUXWKA *wka){ int n = lux->n; LUXELM **V_row = lux->V_row; LUXELM **V_col = lux->V_col; int *R_len = wka->R_len; int *R_head = wka->R_head; int *R_next = wka->R_next; int *C_len = wka->C_len; int *C_head = wka->C_head; int *C_next = wka->C_next; LUXELM *piv, *some, *vij; int i, j, len, min_len, ncand, piv_lim = 5; double best, cost; /* nothing is chosen so far */ piv = NULL, best = DBL_MAX, ncand = 0; /* if in the active submatrix there is a column that has the only non-zero (column singleton), choose it as a pivot */ j = C_head[1]; if (j != 0) { xassert(C_len[j] == 1); piv = V_col[j]; xassert(piv != NULL && piv->c_next == NULL); goto done; } /* if in the active submatrix there is a row that has the only non-zero (row singleton), choose it as a pivot */ i = R_head[1]; if (i != 0) { xassert(R_len[i] == 1); piv = V_row[i]; xassert(piv != NULL && piv->r_next == NULL); goto done; } /* there are no singletons in the active submatrix; walk through other non-empty rows and columns */ for (len = 2; len <= n; len++) { /* consider active columns having len non-zeros */ for (j = C_head[len]; j != 0; j = C_next[j]) { /* j-th column has len non-zeros */ /* find an element in the row of minimal length */ some = NULL, min_len = INT_MAX; for (vij = V_col[j]; vij != NULL; vij = vij->c_next) { if (min_len > R_len[vij->i]) some = vij, min_len = R_len[vij->i]; /* if Markowitz cost of this element is not greater than (len-1)**2, it can be chosen right now; this heuristic reduces the search and works well in many cases */ if (min_len <= len) { piv = some; goto done; } } /* j-th column has been scanned */ /* the minimal element found is a next pivot candidate */ xassert(some != NULL); ncand++; /* compute its Markowitz cost */ cost = (double)(min_len - 1) * (double)(len - 1); /* choose between the current candidate and this element */ if (cost < best) piv = some, best = cost; /* if piv_lim candidates have been considered, there is a doubt that a much better candidate exists; therefore it is the time to terminate the search */ if (ncand == piv_lim) goto done; } /* now consider active rows having len non-zeros */ for (i = R_head[len]; i != 0; i = R_next[i]) { /* i-th row has len non-zeros */ /* find an element in the column of minimal length */ some = NULL, min_len = INT_MAX; for (vij = V_row[i]; vij != NULL; vij = vij->r_next) { if (min_len > C_len[vij->j]) some = vij, min_len = C_len[vij->j]; /* if Markowitz cost of this element is not greater than (len-1)**2, it can be chosen right now; this heuristic reduces the search and works well in many cases */ if (min_len <= len) { piv = some; goto done; } } /* i-th row has been scanned */ /* the minimal element found is a next pivot candidate */ xassert(some != NULL); ncand++;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -