📄 glpios01.c
字号:
} m = tree->orig_m; /* restore original attributes of rows and columns */ xassert(m == tree->orig_m); xassert(n == tree->n); for (i = 1; i <= m; i++) { glp_set_row_bnds(mip, i, tree->orig_type[i], tree->orig_lb[i], tree->orig_ub[i]); glp_set_row_stat(mip, i, tree->orig_stat[i]); mip->row[i]->prim = tree->orig_prim[i]; mip->row[i]->dual = tree->orig_dual[i]; } for (j = 1; j <= n; j++) { glp_set_col_bnds(mip, j, tree->orig_type[m+j], tree->orig_lb[m+j], tree->orig_ub[m+j]); glp_set_col_stat(mip, j, tree->orig_stat[m+j]); mip->col[j]->prim = tree->orig_prim[m+j]; mip->col[j]->dual = tree->orig_dual[m+j]; } mip->pbs_stat = mip->dbs_stat = GLP_FEAS; mip->obj_val = tree->orig_obj; /* delete the branch-and-bound tree */ xassert(tree->local != NULL); ios_delete_pool(tree, tree->local); dmp_delete_pool(tree->pool); xfree(tree->orig_type); xfree(tree->orig_lb); xfree(tree->orig_ub); xfree(tree->orig_stat); xfree(tree->orig_prim); xfree(tree->orig_dual); xfree(tree->slot); if (tree->root_type != NULL) xfree(tree->root_type); if (tree->root_lb != NULL) xfree(tree->root_lb); if (tree->root_ub != NULL) xfree(tree->root_ub); if (tree->root_stat != NULL) xfree(tree->root_stat); xfree(tree->non_int); xfree(tree->n_ref); xfree(tree->c_ref); xfree(tree->j_ref); if (tree->pcost != NULL) ios_pcost_free(tree); xfree(tree->iwrk); xfree(tree->dwrk); scg_delete_graph(tree->g); if (tree->pred_type != NULL) xfree(tree->pred_type); if (tree->pred_lb != NULL) xfree(tree->pred_lb); if (tree->pred_ub != NULL) xfree(tree->pred_ub); if (tree->pred_stat != NULL) xfree(tree->pred_stat);#if 0 xassert(tree->cut_gen == NULL);#endif xassert(tree->mir_gen == NULL); xassert(tree->clq_gen == NULL); xfree(tree); mip->tree = NULL; return;}/************************************************************************ NAME** ios_eval_degrad - estimate obj. degrad. for down- and up-branches** SYNOPSIS** #include "glpios.h"* void ios_eval_degrad(glp_tree *tree, int j, double *dn, double *up);** DESCRIPTION** Given optimal basis to LP relaxation of the current subproblem the* routine ios_eval_degrad performs the dual ratio test to compute the* objective values in the adjacent basis for down- and up-branches,* which are stored in locations *dn and *up, assuming that x[j] is a* variable chosen to branch upon. */void ios_eval_degrad(glp_tree *tree, int j, double *dn, double *up){ glp_prob *mip = tree->mip; int m = mip->m, n = mip->n; int len, kase, k, t, stat; double alfa, beta, gamma, delta, dz; int *ind = tree->iwrk; double *val = tree->dwrk; /* current basis must be optimal */ xassert(glp_get_status(mip) == GLP_OPT); /* basis factorization must exist */ xassert(glp_bf_exists(mip)); /* obtain (fractional) value of x[j] in optimal basic solution to LP relaxation of the current subproblem */ xassert(1 <= j && j <= n); beta = mip->col[j]->prim; /* since the value of x[j] is fractional, it is basic; compute corresponding row of the simplex table */ len = lpx_eval_tab_row(mip, m+j, ind, val); /* kase < 0 means down-branch; kase > 0 means up-branch */ for (kase = -1; kase <= +1; kase += 2) { /* for down-branch we introduce new upper bound floor(beta) for x[j]; similarly, for up-branch we introduce new lower bound ceil(beta) for x[j]; in the current basis this new upper/lower bound is violated, so in the adjacent basis x[j] will leave the basis and go to its new upper/lower bound; we need to know which non-basic variable x[k] should enter the basis to keep dual feasibility */ k = lpx_dual_ratio_test(mip, len, ind, val, kase, 1e-7); /* if no variable has been chosen, current basis being primal infeasible due to the new upper/lower bound of x[j] is dual unbounded, therefore, LP relaxation to corresponding branch has no primal feasible solution */ if (k == 0) { if (mip->dir == GLP_MIN) { if (kase < 0) *dn = +DBL_MAX; else *up = +DBL_MAX; } else if (mip->dir == GLP_MAX) { if (kase < 0) *dn = -DBL_MAX; else *up = -DBL_MAX; } else xassert(mip != mip); continue; } xassert(1 <= k && k <= m+n); /* row of the simplex table corresponding to specified basic variable x[j] is the following: x[j] = ... + alfa * x[k] + ... ; we need to know influence coefficient, alfa, at non-basic variable x[k] chosen with the dual ratio test */ for (t = 1; t <= len; t++) if (ind[t] == k) break; xassert(1 <= t && t <= len); alfa = val[t]; /* determine status and reduced cost of variable x[k] */ if (k <= m) { stat = mip->row[k]->stat; gamma = mip->row[k]->dual; } else { stat = mip->col[k-m]->stat; gamma = mip->col[k-m]->dual; } /* x[k] cannot be basic or fixed non-basic */ xassert(stat == GLP_NL || stat == GLP_NU || stat == GLP_NF); /* if the current basis is dual degenerative, some reduced costs, which are close to zero, may have wrong sign due to round-off errors, so correct the sign of gamma */ if (mip->dir == GLP_MIN) { if (stat == GLP_NL && gamma < 0.0 || stat == GLP_NU && gamma > 0.0 || stat == GLP_NF) gamma = 0.0; } else if (mip->dir == GLP_MAX) { if (stat == GLP_NL && gamma > 0.0 || stat == GLP_NU && gamma < 0.0 || stat == GLP_NF) gamma = 0.0; } else xassert(mip != mip); /* determine the change of x[j] in the adjacent basis: delta x[j] = new x[j] - old x[j] */ delta = (kase < 0 ? floor(beta) : ceil(beta)) - beta; /* compute the change of x[k] in the adjacent basis: delta x[k] = new x[k] - old x[k] = delta x[j] / alfa */ delta /= alfa; /* compute the change of the objective in the adjacent basis: delta z = new z - old z = gamma * delta x[k] */ dz = gamma * delta; if (mip->dir == GLP_MIN) xassert(dz >= 0.0); else if (mip->dir == GLP_MAX) xassert(dz <= 0.0); else xassert(mip != mip); /* compute the new objective value in the adjacent basis: new z = old z + delta z */ if (kase < 0) *dn = mip->obj_val + dz; else *up = mip->obj_val + dz; } /*xprintf("obj = %g; dn = %g; up = %g\n", mip->obj_val, *dn, *up);*/ return;}/************************************************************************ NAME** ios_round_bound - improve local bound by rounding** SYNOPSIS** #include "glpios.h"* double ios_round_bound(glp_tree *tree, double bound);** RETURNS** For the given local bound for any integer feasible solution to the* current subproblem the routine ios_round_bound returns an improved* local bound for the same integer feasible solution.** BACKGROUND** Let the current subproblem has the following objective function:** z = sum c[j] * x[j] + s >= b, (1)* j in J** where J = {j: c[j] is non-zero and integer, x[j] is integer}, s is* the sum of terms corresponding to fixed variables, b is an initial* local bound (minimization).** From (1) it follows that:** d * sum (c[j] / d) * x[j] + s >= b, (2)* j in J** or, equivalently,** sum (c[j] / d) * x[j] >= (b - s) / d = h, (3)* j in J** where d = gcd(c[j]). Since the left-hand side of (3) is integer,* h = (b - s) / d can be rounded up to the nearest integer:** h' = ceil(h) = (b' - s) / d, (4)** that gives an rounded, improved local bound:** b' = d * h' + s. (5)** In case of maximization '>=' in (1) should be replaced by '<=' that* leads to the following formula:** h' = floor(h) = (b' - s) / d, (6)** which should used in the same way as (4).** NOTE: If b is a valid local bound for a child of the current* subproblem, b' is also valid for that child subproblem. */double ios_round_bound(glp_tree *tree, double bound){ glp_prob *mip = tree->mip; int n = mip->n; int d, j, nn, *c = tree->iwrk; double s, h; /* determine c[j] and compute s */ nn = 0, s = mip->c0, d = 0; for (j = 1; j <= n; j++) { GLPCOL *col = mip->col[j]; if (col->coef == 0.0) continue; if (col->type == GLP_FX) { /* fixed variable */ s += col->coef * col->prim; } else { /* non-fixed variable */ if (col->kind != GLP_IV) goto skip; if (col->coef != floor(col->coef)) goto skip; if (fabs(col->coef) <= (double)INT_MAX) c[++nn] = (int)fabs(col->coef); else d = 1; } } /* compute d = gcd(c[1],...c[nn]) */ if (d == 0) { if (nn == 0) goto skip; d = gcdn(nn, c); } xassert(d > 0); /* compute new local bound */ if (mip->dir == GLP_MIN) { if (bound != +DBL_MAX) { h = (bound - s) / (double)d; if (h >= floor(h) + 0.001) { /* round up */ h = ceil(h); /*xprintf("d = %d; old = %g; ", d, bound);*/ bound = (double)d * h + s; /*xprintf("new = %g\n", bound);*/ } } } else if (mip->dir == GLP_MAX) { if (bound != -DBL_MAX) { h = (bound - s) / (double)d; if (h <= ceil(h) - 0.001) { /* round down */ h = floor(h); bound = (double)d * h + s; } } } else xassert(mip != mip);skip: return bound;}/************************************************************************ NAME** ios_is_hopeful - check if subproblem is hopeful** SYNOPSIS** #include "glpios.h"* int ios_is_hopeful(glp_tree *tree, double bound);** DESCRIPTION** Given the local bound of a subproblem the routine ios_is_hopeful* checks if the subproblem can have an integer optimal solution which* is better than the best one currently known.** RETURNS** If the subproblem can have a better integer optimal solution, the* routine returns non-zero; otherwise, if the corresponding branch can* be pruned, the routine returns zero. */int ios_is_hopeful(glp_tree *tree, double bound){ glp_prob *mip = tree->mip; int ret = 1; double eps; if (mip->mip_stat == GLP_FEAS) { eps = tree->parm->tol_obj * (1.0 + fabs(mip->mip_obj)); switch (mip->dir) { case GLP_MIN: if (bound >= mip->mip_obj - eps) ret = 0; break; case GLP_MAX: if (bound <= mip->mip_obj + eps) ret = 0; break; default: xassert(mip != mip); } } else { switch (mip->dir) { case GLP_MIN: if (bound == +DBL_MAX) ret = 0; break; case GLP_MAX: if (bound == -DBL_MAX) ret = 0; break; default: xassert(mip != mip); } } return ret;}/************************************************************************ NAME** ios_best_node - find active node with best local bound** SYNOPSIS** #include "glpios.h"* int ios_best_node(glp_tree *tree);** DESCRIPTION** The routine ios_best_node finds an active node whose local bound is* best among other active nodes.** It is understood that the integer optimal solution of the original* mip problem cannot be better than the best bound, so the best bound* is an lower (minimization) or upper (maximization) global bound for* the original problem.** RETURNS** The routine ios_best_node returns the subproblem reference number* for the best node. However, if the tree is empty, it returns zero. */int ios_best_node(glp_tree *tree){ IOSNPD *node, *best = NULL; switch (tree->mip->dir) { case GLP_MIN: /* minimization */ for (node = tree->head; node != NULL; node = node->next) if (best == NULL || best->bound > node->bound) best = node; break; case GLP_MAX: /* maximization */ for (node = tree->head; node != NULL; node = node->next) if (best == NULL || best->bound < node->bound)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -