📄 glpnet07.c
字号:
/* glpnet07.c (Ford-Fulkerson algorithm) *//************************************************************************ This code is part of GLPK (GNU Linear Programming Kit).** Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,* Department for Applied Informatics, Moscow Aviation Institute,* Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.** GLPK is free software: you can redistribute it and/or modify it* under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** GLPK is distributed in the hope that it will be useful, but WITHOUT* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public* License for more details.** You should have received a copy of the GNU General Public License* along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#include "glplib.h"#include "glpnet.h"/************************************************************************ NAME** ffalg - Ford-Fulkerson algorithm** SYNOPSIS** #include "glpnet.h"* void ffalg(int nv, int na, const int tail[], const int head[],* int s, int t, const int cap[], int x[], char cut[]);** DESCRIPTION** The routine ffalg implements the Ford-Fulkerson algorithm to find a* maximal flow in the specified flow network.** INPUT PARAMETERS** nv is the number of nodes, nv >= 2.** na is the number of arcs, na >= 0.** tail[a], a = 1,...,na, is the index of tail node of arc a.** head[a], a = 1,...,na, is the index of head node of arc a.** s is the source node index, 1 <= s <= nv.** t is the sink node index, 1 <= t <= nv, t != s.** cap[a], a = 1,...,na, is the capacity of arc a, cap[a] >= 0.** NOTE: Multiple arcs are allowed, but self-loops are not allowed.** OUTPUT PARAMETERS** x[a], a = 1,...,na, is optimal value of the flow through arc a.** cut[i], i = 1,...,nv, is 1 if node i is labelled, and 0 otherwise.* The set of arcs, whose one endpoint is labelled and other is not,* defines the minimal cut corresponding to the maximal flow found.* If the parameter cut is NULL, the cut information are not stored.** REFERENCES** L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND* Corp., Report R-375-PR (August 1962), Chap. I "Static Maximal Flow,"* pp.30-33. */void ffalg(int nv, int na, const int tail[], const int head[], int s, int t, const int cap[], int x[], char cut[]){ int a, delta, i, j, k, pos1, pos2, temp, *ptr, *arc, *link, *list; /* sanity checks */ xassert(nv >= 2); xassert(na >= 0); xassert(1 <= s && s <= nv); xassert(1 <= t && t <= nv); xassert(s != t); for (a = 1; a <= na; a++) { i = tail[a], j = head[a]; xassert(1 <= i && i <= nv); xassert(1 <= j && j <= nv); xassert(i != j); xassert(cap[a] >= 0); } /* allocate working arrays */ ptr = xcalloc(1+nv+1, sizeof(int)); arc = xcalloc(1+na+na, sizeof(int)); link = xcalloc(1+nv, sizeof(int)); list = xcalloc(1+nv, sizeof(int)); /* ptr[i] := (degree of node i) */ for (i = 1; i <= nv; i++) ptr[i] = 0; for (a = 1; a <= na; a++) { ptr[tail[a]]++; ptr[head[a]]++; } /* initialize arc pointers */ ptr[1]++; for (i = 1; i < nv; i++) ptr[i+1] += ptr[i]; ptr[nv+1] = ptr[nv]; /* build arc lists */ for (a = 1; a <= na; a++) { arc[--ptr[tail[a]]] = a; arc[--ptr[head[a]]] = a; } xassert(ptr[1] == 1); xassert(ptr[nv+1] == na+na+1); /* now the indices of arcs incident to node i are stored in locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */ /* initialize arc flows */ for (a = 1; a <= na; a++) x[a] = 0;loop: /* main loop starts here */ /* build augmenting tree rooted at s */ /* link[i] = 0 means that node i is not labelled yet; link[i] = a means that arc a immediately precedes node i */ /* initially node s is labelled as the root */ for (i = 1; i <= nv; i++) link[i] = 0; link[s] = -1, list[1] = s, pos1 = pos2 = 1; /* breadth first search */ while (pos1 <= pos2) { /* dequeue node i */ i = list[pos1++]; /* consider all arcs incident to node i */ for (k = ptr[i]; k < ptr[i+1]; k++) { a = arc[k]; if (tail[a] == i) { /* a = i->j is a forward arc from s to t */ j = head[a]; /* if node j has been labelled, skip the arc */ if (link[j] != 0) continue; /* if the arc does not allow increasing the flow through it, skip the arc */ if (x[a] == cap[a]) continue; } else if (head[a] == i) { /* a = i<-j is a backward arc from s to t */ j = tail[a]; /* if node j has been labelled, skip the arc */ if (link[j] != 0) continue; /* if the arc does not allow decreasing the flow through it, skip the arc */ if (x[a] == 0) continue; } else xassert(a != a); /* label node j and enqueue it */ link[j] = a, list[++pos2] = j; /* check for breakthrough */ if (j == t) goto brkt; } } /* NONBREAKTHROUGH */ /* no augmenting path exists; current flow is maximal */ /* store minimal cut information, if necessary */ if (cut != NULL) { for (i = 1; i <= nv; i++) cut[i] = (char)(link[i] != 0); } goto done;brkt: /* BREAKTHROUGH */ /* walk through arcs of the augmenting path (s, ..., t) found in the reverse order and determine maximal change of the flow */ delta = 0; for (j = t; j != s; j = i) { /* arc a immediately precedes node j in the path */ a = link[j]; if (head[a] == j) { /* a = i->j is a forward arc of the cycle */ i = tail[a]; /* x[a] may be increased until its upper bound */ temp = cap[a] - x[a]; } else if (tail[a] == j) { /* a = i<-j is a backward arc of the cycle */ i = head[a]; /* x[a] may be decreased until its lower bound */ temp = x[a]; } else xassert(a != a); if (delta == 0 || delta > temp) delta = temp; } xassert(delta > 0); /* increase the flow along the path */ for (j = t; j != s; j = i) { /* arc a immediately precedes node j in the path */ a = link[j]; if (head[a] == j) { /* a = i->j is a forward arc of the cycle */ i = tail[a]; x[a] += delta; } else if (tail[a] == j) { /* a = i<-j is a backward arc of the cycle */ i = head[a]; x[a] -= delta; } else xassert(a != a); } goto loop;done: /* free working arrays */ xfree(ptr); xfree(arc); xfree(link); xfree(list); return;}/* eof */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -