📄 glpspx01.c
字号:
double *cbar = csa->cbar; double *gamma = csa->gamma; int j, q; double dj, best, temp; /* nothing is chosen so far */ q = 0, best = 0.0; /* look through the list of non-basic variables */ for (j = 1; j <= n; j++) { dj = cbar[j]; switch (stat[j]) { case GLP_NL: /* xN[j] can increase */ if (dj >= - tol_dj) continue; break; case GLP_NU: /* xN[j] can decrease */ if (dj <= + tol_dj) continue; break; case GLP_NF: /* xN[j] can change in any direction */ if (- tol_dj <= dj && dj <= + tol_dj) continue; break; case GLP_NS: /* xN[j] cannot change at all */ continue; default: xassert(stat != stat); } /* xN[j] is eligible non-basic variable; choose one which has largest weighted reduced cost */#ifdef GLP_DEBUG xassert(gamma[j] > 0.0);#endif temp = (dj * dj) / gamma[j]; if (best < temp) q = j, best = temp; } /* store the index of non-basic variable xN[q] chosen */ csa->q = q; return;}/************************************************************************ eval_tcol - compute pivot column of the simplex table** This routine computes the pivot column of the simplex table, which* corresponds to non-basic variable xN[q] chosen.** The pivot column is the following vector:** tcol = T * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],** where B is the current basis matrix, N[q] is a column of the matrix* (I|-A) corresponding to variable xN[q]. */static void eval_tcol(struct csa *csa){ int m = csa->m;#ifdef GLP_DEBUG int n = csa->n;#endif int *head = csa->head; int q = csa->q; int *tcol_ind = csa->tcol_ind; double *tcol_vec = csa->tcol_vec; double *h = csa->tcol_vec; int i, k, nnz;#ifdef GLP_DEBUG xassert(1 <= q && q <= n);#endif k = head[m+q]; /* x[k] = xN[q] */#ifdef GLP_DEBUG xassert(1 <= k && k <= m+n);#endif /* construct the right-hand side vector h = - N[q] */ for (i = 1; i <= m; i++) h[i] = 0.0; if (k <= m) { /* N[q] is k-th column of submatrix I */ h[k] = -1.0; } else { /* N[q] is (k-m)-th column of submatrix (-A) */ int *A_ptr = csa->A_ptr; int *A_ind = csa->A_ind; double *A_val = csa->A_val; int beg, end, ptr; beg = A_ptr[k-m]; end = A_ptr[k-m+1]; for (ptr = beg; ptr < end; ptr++) h[A_ind[ptr]] = A_val[ptr]; } /* solve system B * tcol = h */ xassert(csa->valid); bfd_ftran(csa->bfd, tcol_vec); /* construct sparse pattern of the pivot column */ nnz = 0; for (i = 1; i <= m; i++) { if (tcol_vec[i] != 0.0) tcol_ind[++nnz] = i; } csa->tcol_nnz = nnz; return;}/************************************************************************ refine_tcol - refine pivot column of the simplex table** This routine refines the pivot column of the simplex table assuming* that it was previously computed by the routine eval_tcol. */static void refine_tcol(struct csa *csa){ int m = csa->m;#ifdef GLP_DEBUG int n = csa->n;#endif int *head = csa->head; int q = csa->q; int *tcol_ind = csa->tcol_ind; double *tcol_vec = csa->tcol_vec; double *h = csa->work3; int i, k, nnz;#ifdef GLP_DEBUG xassert(1 <= q && q <= n);#endif k = head[m+q]; /* x[k] = xN[q] */#ifdef GLP_DEBUG xassert(1 <= k && k <= m+n);#endif /* construct the right-hand side vector h = - N[q] */ for (i = 1; i <= m; i++) h[i] = 0.0; if (k <= m) { /* N[q] is k-th column of submatrix I */ h[k] = -1.0; } else { /* N[q] is (k-m)-th column of submatrix (-A) */ int *A_ptr = csa->A_ptr; int *A_ind = csa->A_ind; double *A_val = csa->A_val; int beg, end, ptr; beg = A_ptr[k-m]; end = A_ptr[k-m+1]; for (ptr = beg; ptr < end; ptr++) h[A_ind[ptr]] = A_val[ptr]; } /* refine solution of B * tcol = h */ refine_ftran(csa, h, tcol_vec); /* construct sparse pattern of the pivot column */ nnz = 0; for (i = 1; i <= m; i++) { if (tcol_vec[i] != 0.0) tcol_ind[++nnz] = i; } csa->tcol_nnz = nnz; return;}/************************************************************************ sort_tcol - sort pivot column of the simplex table** This routine reorders the list of non-zero elements of the pivot* column to put significant elements, whose magnitude is not less than* a specified tolerance, in front of the list, and stores the number* of significant elements in tcol_num. */static void sort_tcol(struct csa *csa, double tol_piv){#ifdef GLP_DEBUG int m = csa->m;#endif int nnz = csa->tcol_nnz; int *tcol_ind = csa->tcol_ind; double *tcol_vec = csa->tcol_vec; int i, num, pos; double big, eps, temp; /* compute infinity (maximum) norm of the column */ big = 0.0; for (pos = 1; pos <= nnz; pos++) {#ifdef GLP_DEBUG i = tcol_ind[pos]; xassert(1 <= i && i <= m);#endif temp = fabs(tcol_vec[tcol_ind[pos]]); if (big < temp) big = temp; } csa->tcol_max = big; /* determine absolute pivot tolerance */ eps = tol_piv * (1.0 + 0.01 * big); /* move significant column components to front of the list */ for (num = 0; num < nnz; ) { i = tcol_ind[nnz]; if (fabs(tcol_vec[i]) < eps) nnz--; else { num++; tcol_ind[nnz] = tcol_ind[num]; tcol_ind[num] = i; } } csa->tcol_num = num; return;}/************************************************************************ chuzr - choose basic variable (row of the simplex table)** This routine chooses basic variable xB[p], which reaches its bound* first on changing non-basic variable xN[q] in valid direction.** The parameter rtol is a relative tolerance used to relax bounds of* basic variables. If rtol = 0, the routine implements the standard* ratio test. Otherwise, if rtol > 0, the routine implements Harris'* two-pass ratio test. In the latter case rtol should be about three* times less than a tolerance used to check primal feasibility. */static void chuzr(struct csa *csa, double rtol){ int m = csa->m;#ifdef GLP_DEBUG int n = csa->n;#endif char *type = csa->type; double *lb = csa->lb; double *ub = csa->ub; double *coef = csa->coef; int *head = csa->head; int phase = csa->phase; double *bbar = csa->bbar; double *cbar = csa->cbar; int q = csa->q; int *tcol_ind = csa->tcol_ind; double *tcol_vec = csa->tcol_vec; int tcol_num = csa->tcol_num; int i, i_stat, k, p, p_stat, pos; double alfa, big, delta, s, t, teta, tmax;#ifdef GLP_DEBUG xassert(1 <= q && q <= n);#endif /* s := - sign(d[q]), where d[q] is reduced cost of xN[q] */#ifdef GLP_DEBUG xassert(cbar[q] != 0.0);#endif s = (cbar[q] > 0.0 ? -1.0 : +1.0); /*** FIRST PASS ***/ k = head[m+q]; /* x[k] = xN[q] */#ifdef GLP_DEBUG xassert(1 <= k && k <= m+n);#endif if (type[k] == GLP_DB) { /* xN[q] has both lower and upper bounds */ p = -1, p_stat = 0, teta = ub[k] - lb[k], big = 1.0; } else { /* xN[q] has no opposite bound */ p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0; } /* walk through significant elements of the pivot column */ for (pos = 1; pos <= tcol_num; pos++) { i = tcol_ind[pos];#ifdef GLP_DEBUG xassert(1 <= i && i <= m);#endif k = head[i]; /* x[k] = xB[i] */#ifdef GLP_DEBUG xassert(1 <= k && k <= m+n);#endif alfa = s * tcol_vec[i];#ifdef GLP_DEBUG xassert(alfa != 0.0);#endif /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to consider the only case when xN[q] is increasing */ if (alfa > 0.0) { /* xB[i] is increasing */ if (phase == 1 && coef[k] < 0.0) { /* xB[i] violates its lower bound, which plays the role of an upper bound on phase I */ delta = rtol * (1.0 + kappa * fabs(lb[k])); t = ((lb[k] + delta) - bbar[i]) / alfa; i_stat = GLP_NL; } else if (phase == 1 && coef[k] > 0.0) { /* xB[i] violates its upper bound, which plays the role of an lower bound on phase I */ continue; } else if (type[k] == GLP_UP || type[k] == GLP_DB || type[k] == GLP_FX) { /* xB[i] is within its bounds and has an upper bound */ delta = rtol * (1.0 + kappa * fabs(ub[k])); t = ((ub[k] + delta) - bbar[i]) / alfa; i_stat = GLP_NU; } else { /* xB[i] is within its bounds and has no upper bound */ continue; } } else { /* xB[i] is decreasing */ if (phase == 1 && coef[k] > 0.0) { /* xB[i] violates its upper bound, which plays the role of an lower bound on phase I */ delta = rtol * (1.0 + kappa * fabs(ub[k])); t = ((ub[k] - delta) - bbar[i]) / alfa; i_stat = GLP_NU; } else if (phase == 1 && coef[k] < 0.0) { /* xB[i] violates its lower bound, which plays the role of an upper bound on phase I */ continue; } else if (type[k] == GLP_LO || type[k] == GLP_DB || type[k] == GLP_FX) { /* xB[i] is within its bounds and has an lower bound */ delta = rtol * (1.0 + kappa * fabs(lb[k])); t = ((lb[k] - delta) - bbar[i]) / alfa; i_stat = GLP_NL; } else { /* xB[i] is within its bounds and has no lower bound */ continue; } } /* t is a change of xN[q], on which xB[i] reaches its bound (possibly relaxed); since the basic solution is assumed to be primal feasible (or pseudo feasible on phase I), t has to be non-negative by definition; however, it may happen that xB[i] slightly (i.e. within a tolerance) violates its bound, that leads to negative t; in the latter case, if xB[i] is chosen, negative t means that xN[q] changes in wrong direction; if pivot alfa[i,q] is close to zero, even small bound violation of xB[i] may lead to a large change of xN[q] in wrong direction; let, for example, xB[i] >= 0 and in the current basis its value be -5e-9; let also xN[q] be on its zero bound and should increase; from the ratio test rule it follows that the pivot alfa[i,q] < 0; however, if alfa[i,q] is, say, -1e-9, the change of xN[q] in wrong direction is 5e-9 / (-1e-9) = -5, and using it for updating values of other basic variables will give absolutely wrong results; therefore, if t is negative, we should replace it by exact zero assuming that xB[i] is exactly on its bound, and the violation appears due to round-off errors */ if (t < 0.0) t = 0.0; /* apply minimal ratio test */ if (teta > t || teta == t && big < fabs(alfa)) p = i, p_stat = i_stat, teta = t, big = fabs(alfa); } /* the second pass is skipped in the following cases: */ /* if the standard ratio test is used */ if (rtol == 0.0) goto done; /* if xN[q] reaches its opposite bound or if no basic variable has been chosen on the first pass */ if (p <= 0) goto done; /* if xB[p] is a blocking variable, i.e. if it prevents xN[q] from any change */ if (teta == 0.0) goto done; /*** SECOND PASS ***/ /* here tmax is a maximal change of xN[q], on which the solution remains primal feasible (or pseudo feasible on phase I) within a tolerance */#if 0 tmax = (1.0 + 10.0 * DBL_EPSILON) * teta;#else tmax = teta;#endif /* nothing is chosen so far */ p = 0, p_stat = 0, teta = DBL_MAX, big = 0.0; /* walk through significant elements of the pivot column */ for (pos = 1; pos <= tcol_num; pos++) { i = tcol_ind[pos];#ifdef GLP_DEBUG xassert(1 <= i && i <= m);#endif k = head[i]; /* x[k] = xB[i] */#ifdef GLP_DEBUG xassert(1 <= k && k <= m+n);#endif alfa = s * tcol_vec[i];#ifdef GLP_DEBUG xassert(alfa != 0.0);#endif /* xB[i] = ... + alfa * xN[q] + ..., and due to s we need to
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -