📄 glpini01.c
字号:
for (t = t; t >= 1; t--) { i = ndx[t]; xassert(1 <= i && i <= m); /* the non-zero a[i,j] has left the active submatrix */ len = rs_len[i]; xassert(len >= 1); /* remove the i-th row from the linked list of rows with active length len */ if (rs_prev[i] == 0) rs_head[len] = rs_next[i]; else rs_next[rs_prev[i]] = rs_next[i]; if (rs_next[i] == 0) /* nop */; else rs_prev[rs_next[i]] = rs_prev[i]; /* decrease the active length of the i-th row */ rs_len[i] = --len; /* return the i-th row to the corresponding linked list */ rs_prev[i] = 0; rs_next[i] = rs_head[len]; if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; rs_head[len] = i; } } /* other rows of the matrix A, which are still active, correspond to rows k1, ..., m of the matrix B (in arbitrary order) */ for (i = 1; i <= m; i++) if (rn[i] == 0) rn[i] = k1++; /* but for columns this is not needed, because now the submatrix B2 has no columns */ for (j = 1; j <= n; j++) xassert(cn[j] != 0); /* perform some optional checks */ /* make sure that rn is a permutation of {1, ..., m} and cn is a permutation of {1, ..., n} */ rn_inv = rs_len; /* used as working array */ for (ii = 1; ii <= m; ii++) rn_inv[ii] = 0; for (i = 1; i <= m; i++) { ii = rn[i]; xassert(1 <= ii && ii <= m); xassert(rn_inv[ii] == 0); rn_inv[ii] = i; } cn_inv = rs_head; /* used as working array */ for (jj = 1; jj <= n; jj++) cn_inv[jj] = 0; for (j = 1; j <= n; j++) { jj = cn[j]; xassert(1 <= jj && jj <= n); xassert(cn_inv[jj] == 0); cn_inv[jj] = j; } /* make sure that the matrix B = P*A*Q really has the form, which was declared */ for (ii = 1; ii <= size; ii++) { int diag = 0; i = rn_inv[ii]; t = mat(info, +i, ndx); xassert(0 <= t && t <= n); for (t = t; t >= 1; t--) { j = ndx[t]; xassert(1 <= j && j <= n); jj = cn[j]; if (jj <= size) xassert(jj <= ii); if (jj == ii) { xassert(!diag); diag = 1; } } xassert(diag); } /* free working arrays */ xfree(ndx); xfree(rs_len); xfree(rs_head); xfree(rs_prev); xfree(rs_next); xfree(cs_prev); xfree(cs_next); /* return to the calling program */ return size;}/*------------------------------------------------------------------------ adv_basis - construct advanced initial LP basis.---- *Synopsis*---- #include "glpini.h"-- void adv_basis(glp_prob *lp);---- *Description*---- The routine adv_basis constructs an advanced initial basis for an LP-- problem object, which the parameter lp points to.---- In order to build the initial basis the routine does the following:---- 1) includes in the basis all non-fixed auxiliary variables;---- 2) includes in the basis as many as possible non-fixed structural-- variables preserving triangular form of the basis matrix;---- 3) includes in the basis appropriate (fixed) auxiliary variables-- in order to complete the basis.---- As a result the initial basis has minimum of fixed variables and the-- corresponding basis matrix is triangular. */static int mat(void *info, int k, int ndx[]){ /* this auxiliary routine returns the pattern of a given row or a given column of the augmented constraint matrix A~ = (I|-A), in which columns of fixed variables are implicitly cleared */ LPX *lp = info; int m = lpx_get_num_rows(lp); int n = lpx_get_num_cols(lp); int typx, i, j, lll, len = 0; if (k > 0) { /* the pattern of the i-th row is required */ i = +k; xassert(1 <= i && i <= m);#if 0 /* 22/XII-2003 */ /* if the auxiliary variable x[i] is non-fixed, include its element (placed in the i-th column) in the pattern */ lpx_get_row_bnds(lp, i, &typx, NULL, NULL); if (typx != LPX_FX) ndx[++len] = i; /* include in the pattern elements placed in columns, which correspond to non-fixed structural varables */ i_beg = aa_ptr[i]; i_end = i_beg + aa_len[i] - 1; for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) { j = m + sv_ndx[i_ptr]; lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL); if (typx != LPX_FX) ndx[++len] = j; }#else lll = lpx_get_mat_row(lp, i, ndx, NULL); for (k = 1; k <= lll; k++) { lpx_get_col_bnds(lp, ndx[k], &typx, NULL, NULL); if (typx != LPX_FX) ndx[++len] = m + ndx[k]; } lpx_get_row_bnds(lp, i, &typx, NULL, NULL); if (typx != LPX_FX) ndx[++len] = i;#endif } else { /* the pattern of the j-th column is required */ j = -k; xassert(1 <= j && j <= m+n); /* if the (auxiliary or structural) variable x[j] is fixed, the pattern of its column is empty */ if (j <= m) lpx_get_row_bnds(lp, j, &typx, NULL, NULL); else lpx_get_col_bnds(lp, j-m, &typx, NULL, NULL); if (typx != LPX_FX) { if (j <= m) { /* x[j] is non-fixed auxiliary variable */ ndx[++len] = j; } else { /* x[j] is non-fixed structural variables */#if 0 /* 22/XII-2003 */ j_beg = aa_ptr[j]; j_end = j_beg + aa_len[j] - 1; for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) ndx[++len] = sv_ndx[j_ptr];#else len = lpx_get_mat_col(lp, j-m, ndx, NULL);#endif } } } /* return the length of the row/column pattern */ return len;}void adv_basis(glp_prob *lp){ int m = lpx_get_num_rows(lp); int n = lpx_get_num_cols(lp); int i, j, jj, k, size; int *rn, *cn, *rn_inv, *cn_inv; int typx, *tagx = xcalloc(1+m+n, sizeof(int)); double lb, ub; xprintf("Crashing...\n"); if (m == 0) xerror("glp_adv_basis: problem has no rows\n"); if (n == 0) xerror("glp_adv_basis: problem has no columns\n"); /* use the routine triang (see above) to find maximal triangular part of the augmented constraint matrix A~ = (I|-A); in order to prevent columns of fixed variables to be included in the triangular part, such columns are implictly removed from the matrix A~ by the routine adv_mat */ rn = xcalloc(1+m, sizeof(int)); cn = xcalloc(1+m+n, sizeof(int)); size = triang(m, m+n, lp, mat, rn, cn); if (lpx_get_int_parm(lp, LPX_K_MSGLEV) >= 3) xprintf("Size of triangular part = %d\n", size); /* the first size rows and columns of the matrix P*A~*Q (where P and Q are permutation matrices defined by the arrays rn and cn) form a lower triangular matrix; build the arrays (rn_inv and cn_inv), which define the matrices inv(P) and inv(Q) */ rn_inv = xcalloc(1+m, sizeof(int)); cn_inv = xcalloc(1+m+n, sizeof(int)); for (i = 1; i <= m; i++) rn_inv[rn[i]] = i; for (j = 1; j <= m+n; j++) cn_inv[cn[j]] = j; /* include the columns of the matrix A~, which correspond to the first size columns of the matrix P*A~*Q, in the basis */ for (k = 1; k <= m+n; k++) tagx[k] = -1; for (jj = 1; jj <= size; jj++) { j = cn_inv[jj]; /* the j-th column of A~ is the jj-th column of P*A~*Q */ tagx[j] = LPX_BS; } /* if size < m, we need to add appropriate columns of auxiliary variables to the basis */ for (jj = size + 1; jj <= m; jj++) { /* the jj-th column of P*A~*Q should be replaced by the column of the auxiliary variable, for which the only unity element is placed in the position [jj,jj] */ i = rn_inv[jj]; /* the jj-th row of P*A~*Q is the i-th row of A~, but in the i-th row of A~ the unity element belongs to the i-th column of A~; therefore the disired column corresponds to the i-th auxiliary variable (note that this column doesn't belong to the triangular part found by the routine triang) */ xassert(1 <= i && i <= m); xassert(cn[i] > size); tagx[i] = LPX_BS; } /* free working arrays */ xfree(rn); xfree(cn); xfree(rn_inv); xfree(cn_inv); /* build tags of non-basic variables */ for (k = 1; k <= m+n; k++) { if (tagx[k] != LPX_BS) { if (k <= m) lpx_get_row_bnds(lp, k, &typx, &lb, &ub); else lpx_get_col_bnds(lp, k-m, &typx, &lb, &ub); switch (typx) { case LPX_FR: tagx[k] = LPX_NF; break; case LPX_LO: tagx[k] = LPX_NL; break; case LPX_UP: tagx[k] = LPX_NU; break; case LPX_DB: tagx[k] = (fabs(lb) <= fabs(ub) ? LPX_NL : LPX_NU); break; case LPX_FX: tagx[k] = LPX_NS; break; default: xassert(typx != typx); } } } for (k = 1; k <= m+n; k++) { if (k <= m) lpx_set_row_stat(lp, k, tagx[k]); else lpx_set_col_stat(lp, k-m, tagx[k]); } xfree(tagx); return;}/* eof */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -