📄 glpios02.c
字号:
if (U != +DBL_MAX) { double eps = 1e-12 * (1.0 + fabs(U)); if (UU < U + eps) { /* it cannot be active, so remove it */ *U_ = +DBL_MAX; } }done: return ret;}/************************************************************************ check_col_bounds - check and tighten original column bounds** Given a row (constraint)** n* L <= sum a[j] * x[j] <= U* j=1** and bounds of columns (variables)** l[j] <= x[j] <= u[j]** for column (variable) x[j] this routine checks the original column* bounds l[j] and u[j] for feasibility and redundancy. If the original* lower bound l[j] or/and upper bound u[j] cannot be active due to* bounds of the constraint and other variables, the routine tighten* them replacing by corresponding implied bounds, if possible.** NOTE: It is assumed that if L != -inf, the row lower bound can be* active, and if U != +inf, the row upper bound can be active.** The flag means that variable x[j] is required to be integer.** New actual bounds for x[j] are stored in locations lj and uj.** If no primal infeasibility is detected, the routine returns zero,* otherwise non-zero. */static int check_col_bounds(const struct f_info *f, int n, const double a[], double L, double U, const double l[], const double u[], int flag, int j, double *_lj, double *_uj){ int ret = 0; double lj, uj, ll, uu; xassert(n >= 0); xassert(1 <= j && j <= n); lj = l[j], uj = u[j]; /* determine implied bounds of the column */ col_implied_bounds(f, n, a, L, U, l, u, j, &ll, &uu); /* if x[j] is integral, round its implied bounds */ if (flag) { if (ll != -DBL_MAX) ll = (ll - floor(ll) < 1e-3 ? floor(ll) : ceil(ll)); if (uu != +DBL_MAX) uu = (ceil(uu) - uu < 1e-3 ? ceil(uu) : floor(uu)); } /* check if the original lower bound is infeasible */ if (lj != -DBL_MAX) { double eps = 1e-3 * (1.0 + fabs(lj)); if (uu < lj - eps) { ret = 1; goto done; } } /* check if the original upper bound is infeasible */ if (uj != +DBL_MAX) { double eps = 1e-3 * (1.0 + fabs(uj)); if (ll > uj + eps) { ret = 1; goto done; } } /* check if the original lower bound is redundant */ if (ll != -DBL_MAX) { double eps = 1e-3 * (1.0 + fabs(ll)); if (lj < ll - eps) { /* it cannot be active, so tighten it */ lj = ll; } } /* check if the original upper bound is redundant */ if (uu != +DBL_MAX) { double eps = 1e-3 * (1.0 + fabs(uu)); if (uj > uu + eps) { /* it cannot be active, so tighten it */ uj = uu; } } /* due to round-off errors it may happen that lj > uj (although lj < uj + eps, since no primal infeasibility is detected), so adjuct the new actual bounds to provide lj <= uj */ if (!(lj == -DBL_MAX || uj == +DBL_MAX)) { double t1 = fabs(lj), t2 = fabs(uj); double eps = 1e-10 * (1.0 + (t1 <= t2 ? t1 : t2)); if (lj > uj - eps) { if (lj == l[j]) uj = lj; else if (uj == u[j]) lj = uj; else if (t1 <= t2) uj = lj; else lj = uj; } } *_lj = lj, *_uj = uj;done: return ret;}/************************************************************************ check_efficiency - check if change in column bounds is efficient** Given the original bounds of a column l and u and its new actual* bounds l' and u' (possibly tighten by the routine check_col_bounds)* this routine checks if the change in the column bounds is efficient* enough. If so, the routine returns non-zero, otherwise zero.** The flag means that the variable is required to be integer. */static int check_efficiency(int flag, double l, double u, double ll, double uu){ int eff = 0; /* check efficiency for lower bound */ if (l < ll) { if (flag || l == -DBL_MAX) eff++; else { double r; if (u == +DBL_MAX) r = 1.0 + fabs(l); else r = 1.0 + (u - l); if (ll - l >= 0.25 * r) eff++; } } /* check efficiency for upper bound */ if (u > uu) { if (flag || u == +DBL_MAX) eff++; else { double r; if (l == -DBL_MAX) r = 1.0 + fabs(u); else r = 1.0 + (u - l); if (u - uu >= 0.25 * r) eff++; } } return eff;}/************************************************************************ basic_preprocessing - perform basic preprocessing** This routine performs basic preprocessing of the specified MIP that* includes relaxing some row bounds and tightening some column bounds.** On entry the arrays L and U contains original row bounds, and the* arrays l and u contains original column bounds:** L[0] is the lower bound of the objective row;* L[i], i = 1,...,m, is the lower bound of i-th row;* U[0] is the upper bound of the objective row;* U[i], i = 1,...,m, is the upper bound of i-th row;* l[0] is not used;* l[j], j = 1,...,n, is the lower bound of j-th column;* u[0] is not used;* u[j], j = 1,...,n, is the upper bound of j-th column.** On exit the arrays L, U, l, and u contain new actual bounds of rows* and column in the same locations.** The parameters nrs and num specify an initial list of rows to be* processed:** nrs is the number of rows in the initial list, 0 <= nrs <= m+1;* num[0] is not used;* num[1,...,nrs] are row numbers (0 means the objective row).** The parameter max_pass specifies the maximal number of times that* each row can be processed, max_pass > 0.** If no primal infeasibility is detected, the routine returns zero,* otherwise non-zero. */static int basic_preprocessing(glp_prob *mip, double L[], double U[], double l[], double u[], int nrs, const int num[], int max_pass){ int m = mip->m; int n = mip->n; struct f_info f; int i, j, k, len, size, ret = 0; int *ind, *list, *mark, *pass; double *val, *lb, *ub; xassert(0 <= nrs && nrs <= m+1); xassert(max_pass > 0); /* allocate working arrays */ ind = xcalloc(1+n, sizeof(int)); list = xcalloc(1+m+1, sizeof(int)); mark = xcalloc(1+m+1, sizeof(int)); memset(&mark[0], 0, (m+1) * sizeof(int)); pass = xcalloc(1+m+1, sizeof(int)); memset(&pass[0], 0, (m+1) * sizeof(int)); val = xcalloc(1+n, sizeof(double)); lb = xcalloc(1+n, sizeof(double)); ub = xcalloc(1+n, sizeof(double)); /* initialize the list of rows to be processed */ size = 0; for (k = 1; k <= nrs; k++) { i = num[k]; xassert(0 <= i && i <= m); /* duplicate row numbers are not allowed */ xassert(!mark[i]); list[++size] = i, mark[i] = 1; } xassert(size == nrs); /* process rows in the list until it becomes empty */ while (size > 0) { /* get a next row from the list */ i = list[size--], mark[i] = 0; /* increase the row processing count */ pass[i]++; /* if the row is free, skip it */ if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue; /* obtain coefficients of the row */ len = 0; if (i == 0) { for (j = 1; j <= n; j++) { GLPCOL *col = mip->col[j]; if (col->coef != 0.0) len++, ind[len] = j, val[len] = col->coef; } } else { GLPROW *row = mip->row[i]; GLPAIJ *aij; for (aij = row->ptr; aij != NULL; aij = aij->r_next) len++, ind[len] = aij->col->j, val[len] = aij->val; } /* determine lower and upper bounds of columns corresponding to non-zero row coefficients */ for (k = 1; k <= len; k++) j = ind[k], lb[k] = l[j], ub[k] = u[j]; /* prepare the row info to determine implied bounds */ prepare_row_info(len, val, lb, ub, &f); /* check and relax bounds of the row */ if (check_row_bounds(&f, &L[i], &U[i])) { /* the feasible region is empty */ ret = 1; goto done; } /* if the row became free, drop it */ if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue; /* process columns having non-zero coefficients in the row */ for (k = 1; k <= len; k++) { GLPCOL *col; int flag, eff; double ll, uu; /* take a next column in the row */ j = ind[k], col = mip->col[j]; flag = col->kind != GLP_CV; /* check and tighten bounds of the column */ if (check_col_bounds(&f, len, val, L[i], U[i], lb, ub, flag, k, &ll, &uu)) { /* the feasible region is empty */ ret = 1; goto done; } /* check if change in the column bounds is efficient */ eff = check_efficiency(flag, l[j], u[j], ll, uu); /* set new actual bounds of the column */ l[j] = ll, u[j] = uu; /* if the change is efficient, add all rows affected by the corresponding column, to the list */ if (eff > 0) { GLPAIJ *aij; for (aij = col->ptr; aij != NULL; aij = aij->c_next) { int ii = aij->row->i; /* if the row was processed maximal number of times, skip it */ if (pass[ii] >= max_pass) continue; /* if the row is free, skip it */ if (L[ii] == -DBL_MAX && U[ii] == +DBL_MAX) continue; /* put the row into the list */ if (mark[ii] == 0) { xassert(size <= m); list[++size] = ii, mark[ii] = 1; } } } } }done: /* free working arrays */ xfree(ind); xfree(list); xfree(mark); xfree(pass); xfree(val); xfree(lb); xfree(ub); return ret;}/************************************************************************ NAME** ios_preprocess_node - preprocess current subproblem** SYNOPSIS** #include "glpios.h"* int ios_preprocess_node(glp_tree *tree, int max_pass);** DESCRIPTION** The routine ios_preprocess_node performs basic preprocessing of the* current subproblem.** RETURNS** If no primal infeasibility is detected, the routine returns zero,* otherwise non-zero. */int ios_preprocess_node(glp_tree *tree, int max_pass){ glp_prob *mip = tree->mip; int m = mip->m; int n = mip->n; int i, j, nrs, *num, ret = 0; double *L, *U, *l, *u; /* the current subproblem must exist */ xassert(tree->curr != NULL); /* determine original row bounds */ L = xcalloc(1+m, sizeof(double)); U = xcalloc(1+m, sizeof(double)); switch (mip->mip_stat) { case GLP_UNDEF: L[0] = -DBL_MAX, U[0] = +DBL_MAX; break; case GLP_FEAS: switch (mip->dir) { case GLP_MIN: L[0] = -DBL_MAX, U[0] = mip->mip_obj - mip->c0; break; case GLP_MAX: L[0] = mip->mip_obj - mip->c0, U[0] = +DBL_MAX; break; default: xassert(mip != mip); } break; default: xassert(mip != mip); } for (i = 1; i <= m; i++) { L[i] = glp_get_row_lb(mip, i); U[i] = glp_get_row_ub(mip, i); } /* determine original column bounds */ l = xcalloc(1+n, sizeof(double)); u = xcalloc(1+n, sizeof(double)); for (j = 1; j <= n; j++) { l[j] = glp_get_col_lb(mip, j); u[j] = glp_get_col_ub(mip, j); } /* build the initial list of rows to be analyzed */ nrs = m + 1; num = xcalloc(1+nrs, sizeof(int)); for (i = 1; i <= nrs; i++) num[i] = i - 1; /* perform basic preprocessing */ if (basic_preprocessing(mip , L, U, l, u, nrs, num, max_pass)) { ret = 1; goto done; } /* set new actual (relaxed) row bounds */ for (i = 1; i <= m; i++) { /* consider only non-active rows to keep dual feasibility */ if (glp_get_row_stat(mip, i) == GLP_BS) { if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) glp_set_row_bnds(mip, i, GLP_FR, 0.0, 0.0); else if (U[i] == +DBL_MAX) glp_set_row_bnds(mip, i, GLP_LO, L[i], 0.0); else if (L[i] == -DBL_MAX) glp_set_row_bnds(mip, i, GLP_UP, 0.0, U[i]); } } /* set new actual (tightened) column bounds */ for (j = 1; j <= n; j++) { int type; if (l[j] == -DBL_MAX && u[j] == +DBL_MAX) type = GLP_FR; else if (u[j] == +DBL_MAX) type = GLP_LO; else if (l[j] == -DBL_MAX) type = GLP_UP; else if (l[j] != u[j]) type = GLP_DB; else type = GLP_FX; glp_set_col_bnds(mip, j, type, l[j], u[j]); }done: /* free working arrays and return */ xfree(L); xfree(U); xfree(l); xfree(u); xfree(num); return ret;}/* eof */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -