⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glpapi19.c

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 C
📖 第 1 页 / 共 2 页
字号:
      switch (ret)      {  case 0:            /* optimal circulation found */            ret = 0;            break;         case 1:            /* no feasible circulation exists */            ret = GLP_ENOPFS;            break;         case 2:            /* integer overflow occured */            ret = GLP_ERANGE;            goto done;         case 3:            /* optimality test failed (logic error) */            ret = GLP_EFAIL;            goto done;         default:            xassert(ret != ret);      }      /* store solution components */      /* (objective function = the total cost) */      if (sol != NULL)      {  temp = 0.0;         for (k = 1; k <= na; k++)            temp += (double)cost[k] * (double)x[k];         *sol = temp;      }      /* (arc flows) */      if (a_x >= 0)      {  k = 0;         for (i = 1; i <= G->nv; i++)         {  v = G->v[i];            for (a = v->out; a != NULL; a = a->t_next)            {  temp = (double)x[++k];               memcpy((char *)a->data + a_x, &temp, sizeof(double));            }         }      }      /* (node potentials = Lagrange multipliers) */      if (v_pi >= 0)      {  for (i = 1; i <= G->nv; i++)         {  v = G->v[i];            temp = - (double)pi[i];            memcpy((char *)v->data + v_pi, &temp, sizeof(double));         }      }done: /* free working arrays */      xfree(tail);      xfree(head);      xfree(low);      xfree(cap);      xfree(cost);      xfree(x);      xfree(pi);      return ret;}/************************************************************************  NAME**  glp_maxflow_lp - convert maximum flow problem to LP**  SYNOPSIS**  void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, int s,*     int t, int a_cap);**  DESCRIPTION**  The routine glp_maxflow_lp builds an LP problem, which corresponds*  to the maximum flow problem on the specified network G. */void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, int s,      int t, int a_cap){     glp_vertex *v;      glp_arc *a;      int i, j, type, ind[1+2];      double cap, val[1+2];      if (!(names == GLP_ON || names == GLP_OFF))         xerror("glp_maxflow_lp: names = %d; invalid parameter\n",            names);      if (!(1 <= s && s <= G->nv))         xerror("glp_maxflow_lp: s = %d; source node number out of rang"            "e\n", s);      if (!(1 <= t && t <= G->nv))         xerror("glp_maxflow_lp: t = %d: sink node number out of range "            "\n", t);      if (s == t)         xerror("glp_maxflow_lp: s = t = %d; source and sink nodes must"            " be distinct\n", s);      if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double))         xerror("glp_maxflow_lp: a_cap = %d; invalid offset\n", a_cap);      glp_erase_prob(lp);      if (names) glp_set_prob_name(lp, G->name);      glp_set_obj_dir(lp, GLP_MAX);      glp_add_rows(lp, G->nv);      for (i = 1; i <= G->nv; i++)      {  v = G->v[i];         if (names) glp_set_row_name(lp, i, v->name);         if (i == s)            type = GLP_LO;         else if (i == t)            type = GLP_UP;         else            type = GLP_FX;         glp_set_row_bnds(lp, i, type, 0.0, 0.0);      }      if (G->na > 0) glp_add_cols(lp, G->na);      for (i = 1, j = 0; i <= G->nv; i++)      {  v = G->v[i];         for (a = v->out; a != NULL; a = a->t_next)         {  j++;            if (names)            {  char name[50+1];               sprintf(name, "x[%d,%d]", a->tail->i, a->head->i);               xassert(strlen(name) < sizeof(name));               glp_set_col_name(lp, j, name);            }            if (a->tail->i != a->head->i)            {  ind[1] = a->tail->i, val[1] = +1.0;               ind[2] = a->head->i, val[2] = -1.0;               glp_set_mat_col(lp, j, 2, ind, val);            }            if (a_cap >= 0)               memcpy(&cap, (char *)a->data + a_cap, sizeof(double));            else               cap = 1.0;            if (cap == DBL_MAX)               type = GLP_LO;            else if (cap != 0.0)               type = GLP_DB;            else               type = GLP_FX;            glp_set_col_bnds(lp, j, type, 0.0, cap);            if (a->tail->i == s)               glp_set_obj_coef(lp, j, +1.0);            else if (a->head->i == s)               glp_set_obj_coef(lp, j, -1.0);         }      }      xassert(j == G->na);      return;}int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap,      double *sol, int a_x, int v_cut){     /* find maximal flow with Ford-Fulkerson algorithm */      glp_vertex *v;      glp_arc *a;      int nv, na, i, k, flag, *tail, *head, *cap, *x, ret;      char *cut;      double temp;      if (!(1 <= s && s <= G->nv))         xerror("glp_maxflow_ffalg: s = %d; source node number out of r"            "ange\n", s);      if (!(1 <= t && t <= G->nv))         xerror("glp_maxflow_ffalg: t = %d: sink node number out of ran"            "ge\n", t);      if (s == t)         xerror("glp_maxflow_ffalg: s = t = %d; source and sink nodes m"            "ust be distinct\n", s);      if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double))         xerror("glp_maxflow_ffalg: a_cap = %d; invalid offset\n",            a_cap);      if (v_cut >= 0 && v_cut > G->v_size - (int)sizeof(int))         xerror("glp_maxflow_ffalg: v_cut = %d; invalid offset\n",            v_cut);      /* allocate working arrays */      nv = G->nv;      na = G->na;      tail = xcalloc(1+na, sizeof(int));      head = xcalloc(1+na, sizeof(int));      cap = xcalloc(1+na, sizeof(int));      x = xcalloc(1+na, sizeof(int));      if (v_cut < 0)         cut = NULL;      else         cut = xcalloc(1+nv, sizeof(char));      /* copy the flow network */      k = 0;      for (i = 1; i <= G->nv; i++)      {  v = G->v[i];         for (a = v->out; a != NULL; a = a->t_next)         {  k++;            tail[k] = a->tail->i;            head[k] = a->head->i;            if (tail[k] == head[k])            {  ret = GLP_EDATA;               goto done;            }            if (a_cap >= 0)               memcpy(&temp, (char *)a->data + a_cap, sizeof(double));            else               temp = 1.0;            if (!(0.0 <= temp && temp <= (double)INT_MAX &&                  temp == floor(temp)))            {  ret = GLP_EDATA;               goto done;            }            cap[k] = (int)temp;         }      }      xassert(k == na);      /* find maximal flow in the flow network */      ffalg(nv, na, tail, head, s, t, cap, x, cut);      ret = 0;      /* store solution components */      /* (objective function = total flow through the network) */      if (sol != NULL)      {  temp = 0.0;         for (k = 1; k <= na; k++)         {  if (tail[k] == s)               temp += (double)x[k];            else if (head[k] == s)               temp -= (double)x[k];         }         *sol = temp;      }      /* (arc flows) */      if (a_x >= 0)      {  k = 0;         for (i = 1; i <= G->nv; i++)         {  v = G->v[i];            for (a = v->out; a != NULL; a = a->t_next)            {  temp = (double)x[++k];               memcpy((char *)a->data + a_x, &temp, sizeof(double));            }         }      }      /* (node flags) */      if (v_cut >= 0)      {  for (i = 1; i <= G->nv; i++)         {  v = G->v[i];            flag = cut[i];            memcpy((char *)v->data + v_cut, &flag, sizeof(int));         }      }done: /* free working arrays */      xfree(tail);      xfree(head);      xfree(cap);      xfree(x);      if (cut != NULL) xfree(cut);      return ret;}/* eof */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -