⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glpapi19.c

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 C
📖 第 1 页 / 共 2 页
字号:
/* glpapi19.c (flow network problems) *//************************************************************************  This code is part of GLPK (GNU Linear Programming Kit).**  Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,*  Department for Applied Informatics, Moscow Aviation Institute,*  Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.**  GLPK is free software: you can redistribute it and/or modify it*  under the terms of the GNU General Public License as published by*  the Free Software Foundation, either version 3 of the License, or*  (at your option) any later version.**  GLPK is distributed in the hope that it will be useful, but WITHOUT*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public*  License for more details.**  You should have received a copy of the GNU General Public License*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#include "glpapi.h"#include "glpnet.h"/************************************************************************  NAME**  glp_mincost_lp - convert minimum cost flow problem to LP**  SYNOPSIS**  void glp_mincost_lp(glp_prob *lp, glp_graph *G, int names,*     int v_rhs, int a_low, int a_cap, int a_cost);**  DESCRIPTION**  The routine glp_mincost_lp builds an LP problem, which corresponds*  to the minimum cost flow problem on the specified network G. */void glp_mincost_lp(glp_prob *lp, glp_graph *G, int names, int v_rhs,      int a_low, int a_cap, int a_cost){     glp_vertex *v;      glp_arc *a;      int i, j, type, ind[1+2];      double rhs, low, cap, cost, val[1+2];      if (!(names == GLP_ON || names == GLP_OFF))         xerror("glp_mincost_lp: names = %d; invalid parameter\n",            names);      if (v_rhs >= 0 && v_rhs > G->v_size - (int)sizeof(double))         xerror("glp_mincost_lp: v_rhs = %d; invalid offset\n", v_rhs);      if (a_low >= 0 && a_low > G->a_size - (int)sizeof(double))         xerror("glp_mincost_lp: a_low = %d; invalid offset\n", a_low);      if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double))         xerror("glp_mincost_lp: a_cap = %d; invalid offset\n", a_cap);      if (a_cost >= 0 && a_cost > G->a_size - (int)sizeof(double))         xerror("glp_mincost_lp: a_cost = %d; invalid offset\n", a_cost)            ;      glp_erase_prob(lp);      if (names) glp_set_prob_name(lp, G->name);      if (G->nv > 0) glp_add_rows(lp, G->nv);      for (i = 1; i <= G->nv; i++)      {  v = G->v[i];         if (names) glp_set_row_name(lp, i, v->name);         if (v_rhs >= 0)            memcpy(&rhs, (char *)v->data + v_rhs, sizeof(double));         else            rhs = 0.0;         glp_set_row_bnds(lp, i, GLP_FX, rhs, rhs);      }      if (G->na > 0) glp_add_cols(lp, G->na);      for (i = 1, j = 0; i <= G->nv; i++)      {  v = G->v[i];         for (a = v->out; a != NULL; a = a->t_next)         {  j++;            if (names)            {  char name[50+1];               sprintf(name, "x[%d,%d]", a->tail->i, a->head->i);               xassert(strlen(name) < sizeof(name));               glp_set_col_name(lp, j, name);            }            if (a->tail->i != a->head->i)            {  ind[1] = a->tail->i, val[1] = +1.0;               ind[2] = a->head->i, val[2] = -1.0;               glp_set_mat_col(lp, j, 2, ind, val);            }            if (a_low >= 0)               memcpy(&low, (char *)a->data + a_low, sizeof(double));            else               low = 0.0;            if (a_cap >= 0)               memcpy(&cap, (char *)a->data + a_cap, sizeof(double));            else               cap = 1.0;            if (cap == DBL_MAX)               type = GLP_LO;            else if (low != cap)               type = GLP_DB;            else               type = GLP_FX;            glp_set_col_bnds(lp, j, type, low, cap);            if (a_cost >= 0)               memcpy(&cost, (char *)a->data + a_cost, sizeof(double));            else               cost = 0.0;            glp_set_obj_coef(lp, j, cost);         }      }      xassert(j == G->na);      return;}/**********************************************************************/int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, int a_cap,      int a_cost, double *sol, int a_x, int v_pi){     /* find minimum-cost flow with out-of-kilter algorithm */      glp_vertex *v;      glp_arc *a;      int nv, na, i, k, s, t, *tail, *head, *low, *cap, *cost, *x, *pi,         ret;      double sum, temp;      if (v_rhs >= 0 && v_rhs > G->v_size - (int)sizeof(double))         xerror("glp_mincost_okalg: v_rhs = %d; invalid offset\n",            v_rhs);      if (a_low >= 0 && a_low > G->a_size - (int)sizeof(double))         xerror("glp_mincost_okalg: a_low = %d; invalid offset\n",            a_low);      if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double))         xerror("glp_mincost_okalg: a_cap = %d; invalid offset\n",            a_cap);      if (a_cost >= 0 && a_cost > G->a_size - (int)sizeof(double))         xerror("glp_mincost_okalg: a_cost = %d; invalid offset\n",            a_cost);      if (a_x >= 0 && a_x > G->a_size - (int)sizeof(double))         xerror("glp_mincost_okalg: a_x = %d; invalid offset\n", a_x);      if (v_pi >= 0 && v_pi > G->v_size - (int)sizeof(double))         xerror("glp_mincost_okalg: v_pi = %d; invalid offset\n", v_pi);      /* s is artificial source node */      s = G->nv + 1;      /* t is artificial sink node */      t = s + 1;      /* nv is the total number of nodes in the resulting network */      nv = t;      /* na is the total number of arcs in the resulting network */      na = G->na + 1;      for (i = 1; i <= G->nv; i++)      {  v = G->v[i];         if (v_rhs >= 0)            memcpy(&temp, (char *)v->data + v_rhs, sizeof(double));         else            temp = 0.0;         if (temp != 0.0) na++;      }      /* allocate working arrays */      tail = xcalloc(1+na, sizeof(int));      head = xcalloc(1+na, sizeof(int));      low = xcalloc(1+na, sizeof(int));      cap = xcalloc(1+na, sizeof(int));      cost = xcalloc(1+na, sizeof(int));      x = xcalloc(1+na, sizeof(int));      pi = xcalloc(1+nv, sizeof(int));      /* construct the resulting network */      k = 0;      /* (original arcs) */      for (i = 1; i <= G->nv; i++)      {  v = G->v[i];         for (a = v->out; a != NULL; a = a->t_next)         {  k++;            tail[k] = a->tail->i;            head[k] = a->head->i;            if (tail[k] == head[k])            {  ret = GLP_EDATA;               goto done;            }            if (a_low >= 0)               memcpy(&temp, (char *)a->data + a_low, sizeof(double));            else               temp = 0.0;            if (!(0.0 <= temp && temp <= (double)INT_MAX &&                  temp == floor(temp)))            {  ret = GLP_EDATA;               goto done;            }            low[k] = (int)temp;            if (a_cap >= 0)               memcpy(&temp, (char *)a->data + a_cap, sizeof(double));            else               temp = 1.0;            if (!((double)low[k] <= temp && temp <= (double)INT_MAX &&                  temp == floor(temp)))            {  ret = GLP_EDATA;               goto done;            }            cap[k] = (int)temp;            if (a_cost >= 0)               memcpy(&temp, (char *)a->data + a_cost, sizeof(double));            else               temp = 0.0;            if (!(fabs(temp) <= (double)INT_MAX && temp == floor(temp)))            {  ret = GLP_EDATA;               goto done;            }            cost[k] = (int)temp;         }      }      /* (artificial arcs) */      sum = 0.0;      for (i = 1; i <= G->nv; i++)      {  v = G->v[i];         if (v_rhs >= 0)            memcpy(&temp, (char *)v->data + v_rhs, sizeof(double));         else            temp = 0.0;         if (!(fabs(temp) <= (double)INT_MAX && temp == floor(temp)))         {  ret = GLP_EDATA;            goto done;         }         if (temp > 0.0)         {  /* artificial arc from s to original source i */            k++;            tail[k] = s;            head[k] = i;            low[k] = cap[k] = (int)(+temp); /* supply */            cost[k] = 0;            sum += (double)temp;         }         else if (temp < 0.0)         {  /* artificial arc from original sink i to t */            k++;            tail[k] = i;            head[k] = t;            low[k] = cap[k] = (int)(-temp); /* demand */            cost[k] = 0;         }      }      /* (feedback arc from t to s) */      k++;      xassert(k == na);      tail[k] = t;      head[k] = s;      if (sum > (double)INT_MAX)      {  ret = GLP_EDATA;         goto done;      }      low[k] = cap[k] = (int)sum; /* total supply/demand */      cost[k] = 0;      /* find minimal-cost circulation in the resulting network */      ret = okalg(nv, na, tail, head, low, cap, cost, x, pi);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -