⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glpscf.c

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 C
📖 第 1 页 / 共 2 页
字号:
#if _GLPSCF_DEBUG/************************************************************************  The routine check_error computes the maximal relative error between*  left- and right-hand sides of the main equality F * C = U * P. (This*  routine is intended only for debugging.) */static void check_error(SCF *scf, const char *func){     int n = scf->n;      double *f = scf->f;      double *u = scf->u;      int *p = scf->p;      double *c = scf->c;      int i, j, k;      double d, dmax = 0.0, s, t;      xassert(c != NULL);      for (i = 1; i <= n; i++)      {  for (j = 1; j <= n; j++)         {  /* compute element (i,j) of product F * C */            s = 0.0;            for (k = 1; k <= n; k++)               s += f[f_loc(scf, i, k)] * c[f_loc(scf, k, j)];            /* compute element (i,j) of product U * P */            k = p[j];            t = (i <= k ? u[u_loc(scf, i, k)] : 0.0);            /* compute the maximal relative error */            d = fabs(s - t) / (1.0 + fabs(t));            if (dmax < d) dmax = d;         }      }      if (dmax > 1e-8)         xprintf("%s: dmax = %g; relative error too large\n", func,            dmax);      return;}#endif/************************************************************************  NAME**  scf_update_exp - update factorization on expanding C**  SYNOPSIS**  #include "glpscf.h"*  int scf_update_exp(SCF *scf, const double x[], const double y[],*     double z);**  DESCRIPTION**  The routine scf_update_exp updates the factorization of matrix C on*  expanding it by adding a new row and column as follows:**             ( C  x )*     new C = (      )*             ( y' z )**  where x[1,...,n] is a new column, y[1,...,n] is a new row, and z is*  a new diagonal element.**  If on entry the factorization is empty, the parameters x and y can*  be specified as NULL.**  RETURNS**  0  The factorization has been successfully updated.**  SCF_ESING*     The factorization has been successfully updated, however, new*     matrix C is singular within working precision. Note that the new*     factorization remains valid.**  SCF_ELIMIT*     There is not enough room to expand the factorization, because*     n = n_max. The factorization remains unchanged.**  ALGORITHM**  We can see that:**     ( F  0 ) ( C  x )   ( FC  Fx )   ( UP  Fx )*     (      ) (      ) = (        ) = (        ) =*     ( 0  1 ) ( y' z )   ( y'   z )   ( y'   z )**        ( U   Fx ) ( P  0 )*     =  (        ) (      ),*        ( y'P' z ) ( 0  1 )**  therefore to keep the main equality F * C = U * P we can take:**             ( F  0 )           ( U   Fx )           ( P  0 )*     new F = (      ),  new U = (        ),  new P = (      ),*             ( 0  1 )           ( y'P' z )           ( 0  1 )**  and eliminate the row spike y'P' in the last row of new U to restore*  its upper triangular structure. */int scf_update_exp(SCF *scf, const double x[], const double y[],      double z){     int n_max = scf->n_max;      int n = scf->n;      double *f = scf->f;      double *u = scf->u;      int *p = scf->p;#if _GLPSCF_DEBUG      double *c = scf->c;#endif      double *un = scf->w;      int i, ij, in, j, k, nj, ret = 0;      double t;      /* check if the factorization can be expanded */      if (n == n_max)      {  /* there is not enough room */         ret = SCF_ELIMIT;         goto done;      }      /* increase the order of the factorization */      scf->n = ++n;      /* fill new zero column of matrix F */      for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)         f[in] = 0.0;      /* fill new zero row of matrix F */      for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)         f[nj] = 0.0;      /* fill new unity diagonal element of matrix F */      f[f_loc(scf, n, n)] = 1.0;      /* compute new column of matrix U, which is (old F) * x */      for (i = 1; i < n; i++)      {  /* u[i,n] := (i-th row of old F) * x */         t = 0.0;         for (j = 1, ij = f_loc(scf, i, 1); j < n; j++, ij++)            t += f[ij] * x[j];         u[u_loc(scf, i, n)] = t;      }      /* compute new (spiked) row of matrix U, which is (old P) * y */      for (j = 1; j < n; j++) un[j] = y[p[j]];      /* store new diagonal element of matrix U, which is z */      un[n] = z;      /* expand matrix P */      p[n] = n;#if _GLPSCF_DEBUG      /* expand matrix C */      /* fill its new column, which is x */      for (i = 1, in = f_loc(scf, i, n); i < n; i++, in += n_max)         c[in] = x[i];      /* fill its new row, which is y */      for (j = 1, nj = f_loc(scf, n, j); j < n; j++, nj++)         c[nj] = y[j];      /* fill its new diagonal element, which is z */      c[f_loc(scf, n, n)] = z;#endif      /* restore upper triangular structure of matrix U */      for (k = 1; k < n; k++)         if (un[k] != 0.0) break;      transform(scf, k, un);      /* estimate the rank of matrices C and U */      scf->rank = estimate_rank(scf);      if (scf->rank != n) ret = SCF_ESING;#if _GLPSCF_DEBUG      /* check that the factorization is accurate enough */      check_error(scf, "scf_update_exp");#endifdone: return ret;}/************************************************************************  The routine solve solves the system C * x = b.**  From the main equation F * C = U * P it follows that:**     C * x = b  =>  F * C * x = F * b  =>  U * P * x = F * b  =>**     P * x = inv(U) * F * b  =>  x = P' * inv(U) * F * b.**  On entry the array x contains right-hand side vector b. On exit this*  array contains solution vector x. */static void solve(SCF *scf, double x[]){     int n = scf->n;      double *f = scf->f;      double *u = scf->u;      int *p = scf->p;      double *y = scf->w;      int i, j, ij;      double t;      /* y := F * b */      for (i = 1; i <= n; i++)      {  /* y[i] = (i-th row of F) * b */         t = 0.0;         for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)            t += f[ij] * x[j];         y[i] = t;      }      /* y := inv(U) * y */      for (i = n; i >= 1; i--)      {  t = y[i];         for (j = n, ij = u_loc(scf, i, n); j > i; j--, ij--)            t -= u[ij] * y[j];         y[i] = t / u[ij];      }      /* x := P' * y */      for (i = 1; i <= n; i++) x[p[i]] = y[i];      return;}/************************************************************************  The routine tsolve solves the transposed system C' * x = b.**  From the main equation F * C = U * P it follows that:**     C' * F' = P' * U',**  therefore:**     C' * x = b  =>  C' * F' * inv(F') * x = b  =>**     P' * U' * inv(F') * x = b  =>  U' * inv(F') * x = P * b  =>**     inv(F') * x = inv(U') * P * b  =>  x = F' * inv(U') * P * b.**  On entry the array x contains right-hand side vector b. On exit this*  array contains solution vector x. */static void tsolve(SCF *scf, double x[]){     int n = scf->n;      double *f = scf->f;      double *u = scf->u;      int *p = scf->p;      double *y = scf->w;      int i, j, ij;      double t;      /* y := P * b */      for (i = 1; i <= n; i++) y[i] = x[p[i]];      /* y := inv(U') * y */      for (i = 1; i <= n; i++)      {  /* compute y[i] */         ij = u_loc(scf, i, i);         t = (y[i] /= u[ij]);         /* substitute y[i] in other equations */         for (j = i+1, ij++; j <= n; j++, ij++)            y[j] -= u[ij] * t;      }      /* x := F' * y (computed as linear combination of rows of F) */      for (j = 1; j <= n; j++) x[j] = 0.0;      for (i = 1; i <= n; i++)      {  t = y[i]; /* coefficient of linear combination */         for (j = 1, ij = f_loc(scf, i, 1); j <= n; j++, ij++)            x[j] += f[ij] * t;      }      return;}/************************************************************************  NAME**  scf_solve_it - solve either system C * x = b or C' * x = b**  SYNOPSIS**  #include "glpscf.h"*  void scf_solve_it(SCF *scf, int tr, double x[]);**  DESCRIPTION**  The routine scf_solve_it solves either the system C * x = b (if tr*  is zero) or the system C' * x = b, where C' is a matrix transposed*  to C (if tr is non-zero). C is assumed to be non-singular.**  On entry the array x should contain the right-hand side vector b in*  locations x[1], ..., x[n], where n is the order of matrix C. On exit*  the array x contains the solution vector x in the same locations. */void scf_solve_it(SCF *scf, int tr, double x[]){     if (scf->rank < scf->n)         xfault("scf_solve_it: singular matrix\n");      if (!tr)         solve(scf, x);      else         tsolve(scf, x);      return;}void scf_reset_it(SCF *scf){     /* reset factorization for empty matrix C */      scf->n = scf->rank = 0;      return;}/************************************************************************  NAME**  scf_delete_it - delete Schur complement factorization**  SYNOPSIS**  #include "glpscf.h"*  void scf_delete_it(SCF *scf);**  DESCRIPTION**  The routine scf_delete_it deletes the specified factorization and*  frees all the memory allocated to this object. */void scf_delete_it(SCF *scf){     xfree(scf->f);      xfree(scf->u);      xfree(scf->p);#if _GLPSCF_DEBUG      xfree(scf->c);#endif      xfree(scf->w);      xfree(scf);      return;}/* eof */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -