📄 glpscf.c
字号:
/* glpscf.c (Schur complement factorization) *//************************************************************************ This code is part of GLPK (GNU Linear Programming Kit).** Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,* Department for Applied Informatics, Moscow Aviation Institute,* Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.** GLPK is free software: you can redistribute it and/or modify it* under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** GLPK is distributed in the hope that it will be useful, but WITHOUT* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public* License for more details.** You should have received a copy of the GNU General Public License* along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#include "glplib.h"#include "glpscf.h"#define xfault xerror#define _GLPSCF_DEBUG 0#define eps 1e-10/************************************************************************ NAME** scf_create_it - create Schur complement factorization** SYNOPSIS** #include "glpscf.h"* SCF *scf_create_it(int n_max);** DESCRIPTION** The routine scf_create_it creates the factorization of matrix C,* which initially has no rows and columns.** The parameter n_max specifies the maximal order of matrix C to be* factorized, 1 <= n_max <= 32767.** RETURNS** The routine scf_create_it returns a pointer to the structure SCF,* which defines the factorization. */SCF *scf_create_it(int n_max){ SCF *scf;#if _GLPSCF_DEBUG xprintf("scf_create_it: warning: debug mode enabled\n");#endif if (!(1 <= n_max && n_max <= 32767)) xfault("scf_create_it: n_max = %d; invalid parameter\n", n_max); scf = xmalloc(sizeof(SCF)); scf->n_max = n_max; scf->n = 0; scf->f = xcalloc(1 + n_max * n_max, sizeof(double)); scf->u = xcalloc(1 + n_max * (n_max + 1) / 2, sizeof(double)); scf->p = xcalloc(1 + n_max, sizeof(int)); scf->t_opt = SCF_TBG; scf->rank = 0;#if _GLPSCF_DEBUG scf->c = xcalloc(1 + n_max * n_max, sizeof(double));#else scf->c = NULL;#endif scf->w = xcalloc(1 + n_max, sizeof(double)); return scf;}/************************************************************************ The routine f_loc determines location of matrix element F[i,j] in* the one-dimensional array f. */static int f_loc(SCF *scf, int i, int j){ int n_max = scf->n_max; int n = scf->n; xassert(1 <= i && i <= n); xassert(1 <= j && j <= n); return (i - 1) * n_max + j;}/************************************************************************ The routine u_loc determines location of matrix element U[i,j] in* the one-dimensional array u. */static int u_loc(SCF *scf, int i, int j){ int n_max = scf->n_max; int n = scf->n; xassert(1 <= i && i <= n); xassert(i <= j && j <= n); return (i - 1) * n_max + j - i * (i - 1) / 2;}/************************************************************************ The routine bg_transform applies Bartels-Golub version of gaussian* elimination to restore triangular structure of matrix U.** On entry matrix U has the following structure:** 1 k n* 1 * * * * * * * * * ** . * * * * * * * * ** . . * * * * * * * ** . . . * * * * * * ** k . . . . * * * * * ** . . . . . * * * * ** . . . . . . * * * ** . . . . . . . * * ** . . . . . . . . * ** n . . . . # # # # # #** where '#' is a row spike to be eliminated.** Elements of n-th row are passed separately in locations un[k], ...,* un[n]. On exit the content of the array un is destroyed.** REFERENCES** R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming* Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */static void bg_transform(SCF *scf, int k, double un[]){ int n = scf->n; double *f = scf->f; double *u = scf->u; int j, k1, kj, kk, n1, nj; double t; xassert(1 <= k && k <= n); /* main elimination loop */ for (k = k; k < n; k++) { /* determine location of U[k,k] */ kk = u_loc(scf, k, k); /* determine location of F[k,1] */ k1 = f_loc(scf, k, 1); /* determine location of F[n,1] */ n1 = f_loc(scf, n, 1); /* if |U[k,k]| < |U[n,k]|, interchange k-th and n-th rows to provide |U[k,k]| >= |U[n,k]| */ if (fabs(u[kk]) < fabs(un[k])) { /* interchange k-th and n-th rows of matrix U */ for (j = k, kj = kk; j <= n; j++, kj++) t = u[kj], u[kj] = un[j], un[j] = t; /* interchange k-th and n-th rows of matrix F to keep the main equality F * C = U * P */ for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++) t = f[kj], f[kj] = f[nj], f[nj] = t; } /* now |U[k,k]| >= |U[n,k]| */ /* if U[k,k] is too small in the magnitude, replace U[k,k] and U[n,k] by exact zero */ if (fabs(u[kk]) < eps) u[kk] = un[k] = 0.0; /* if U[n,k] is already zero, elimination is not needed */ if (un[k] == 0.0) continue; /* compute gaussian multiplier t = U[n,k] / U[k,k] */ t = un[k] / u[kk]; /* apply gaussian elimination to nullify U[n,k] */ /* (n-th row of U) := (n-th row of U) - t * (k-th row of U) */ for (j = k+1, kj = kk+1; j <= n; j++, kj++) un[j] -= t * u[kj]; /* (n-th row of F) := (n-th row of F) - t * (k-th row of F) to keep the main equality F * C = U * P */ for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++) f[nj] -= t * f[kj]; } /* if U[n,n] is too small in the magnitude, replace it by exact zero */ if (fabs(un[n]) < eps) un[n] = 0.0; /* store U[n,n] in a proper location */ u[u_loc(scf, n, n)] = un[n]; return;}/************************************************************************ The routine givens computes the parameters of Givens plane rotation* c = cos(teta) and s = sin(teta) such that:** ( c -s ) ( a ) ( r )* ( ) ( ) = ( ) ,* ( s c ) ( b ) ( 0 )** where a and b are given scalars.** REFERENCES** G.H.Golub, C.F.Van Loan, "Matrix Computations", 2nd ed. */static void givens(double a, double b, double *c, double *s){ double t; if (b == 0.0) (*c) = 1.0, (*s) = 0.0; else if (fabs(a) <= fabs(b)) t = - a / b, (*s) = 1.0 / sqrt(1.0 + t * t), (*c) = (*s) * t; else t = - b / a, (*c) = 1.0 / sqrt(1.0 + t * t), (*s) = (*c) * t; return;}/*----------------------------------------------------------------------* The routine gr_transform applies Givens plane rotations to restore* triangular structure of matrix U.** On entry matrix U has the following structure:** 1 k n* 1 * * * * * * * * * ** . * * * * * * * * ** . . * * * * * * * ** . . . * * * * * * ** k . . . . * * * * * ** . . . . . * * * * ** . . . . . . * * * ** . . . . . . . * * ** . . . . . . . . * ** n . . . . # # # # # #** where '#' is a row spike to be eliminated.** Elements of n-th row are passed separately in locations un[k], ...,* un[n]. On exit the content of the array un is destroyed.** REFERENCES** R.H.Bartels, G.H.Golub, "The Simplex Method of Linear Programming* Using LU-decomposition", Comm. ACM, 12, pp. 266-68, 1969. */static void gr_transform(SCF *scf, int k, double un[]){ int n = scf->n; double *f = scf->f; double *u = scf->u; int j, k1, kj, kk, n1, nj; double c, s; xassert(1 <= k && k <= n); /* main elimination loop */ for (k = k; k < n; k++) { /* determine location of U[k,k] */ kk = u_loc(scf, k, k); /* determine location of F[k,1] */ k1 = f_loc(scf, k, 1); /* determine location of F[n,1] */ n1 = f_loc(scf, n, 1); /* if both U[k,k] and U[n,k] are too small in the magnitude, replace them by exact zero */ if (fabs(u[kk]) < eps && fabs(un[k]) < eps) u[kk] = un[k] = 0.0; /* if U[n,k] is already zero, elimination is not needed */ if (un[k] == 0.0) continue; /* compute the parameters of Givens plane rotation */ givens(u[kk], un[k], &c, &s); /* apply Givens rotation to k-th and n-th rows of matrix U */ for (j = k, kj = kk; j <= n; j++, kj++) { double ukj = u[kj], unj = un[j]; u[kj] = c * ukj - s * unj; un[j] = s * ukj + c * unj; } /* apply Givens rotation to k-th and n-th rows of matrix F to keep the main equality F * C = U * P */ for (j = 1, kj = k1, nj = n1; j <= n; j++, kj++, nj++) { double fkj = f[kj], fnj = f[nj]; f[kj] = c * fkj - s * fnj; f[nj] = s * fkj + c * fnj; } } /* if U[n,n] is too small in the magnitude, replace it by exact zero */ if (fabs(un[n]) < eps) un[n] = 0.0; /* store U[n,n] in a proper location */ u[u_loc(scf, n, n)] = un[n]; return;}/************************************************************************ The routine transform restores triangular structure of matrix U.* It is a driver to the routines bg_transform and gr_transform (see* comments to these routines above). */static void transform(SCF *scf, int k, double un[]){ switch (scf->t_opt) { case SCF_TBG: bg_transform(scf, k, un); break; case SCF_TGR: gr_transform(scf, k, un); break; default: xassert(scf != scf); } return;}/************************************************************************ The routine estimate_rank estimates the rank of matrix C.** Since all transformations applied to matrix F are non-singular,* and F is assumed to be well conditioned, from the main equaility* F * C = U * P it follows that rank(C) = rank(U), where rank(U) is* estimated as the number of non-zero diagonal elements of U. */static int estimate_rank(SCF *scf){ int n_max = scf->n_max; int n = scf->n; double *u = scf->u; int i, ii, inc, rank = 0; for (i = 1, ii = u_loc(scf, i, i), inc = n_max; i <= n; i++, ii += inc, inc--) if (u[ii] != 0.0) rank++; return rank;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -