📄 glpios08.c
字号:
xassert(lp != lp); } /* set x[p] to 1 and examine x[q] */ switch (probing(len, val, L, U, lf_min, lf_max, p, 1, q)) { case 0: /* no logical relation */ break; case 1: /* x[p] = 1 implies x[q] = 0 */ lpx_add_cog_edge(cog, +ind[p], +ind[q]); break; case 2: /* x[p] = 1 implies x[q] = 1 */ lpx_add_cog_edge(cog, +ind[p], -ind[q]); break; default: xassert(lp != lp); } } } } xprintf("The conflict graph has 2*%d vertices and %d edges\n", cog->nb, cog->ne);done: xfree(ind); xfree(val); return cog;}/*------------------------------------------------------------------------ lpx_add_cog_edge - add edge to the conflict graph.---- SYNOPSIS---- #include "glplpx.h"-- void lpx_add_cog_edge(void *cog, int i, int j);---- DESCRIPTION---- The routine lpx_add_cog_edge adds an edge to the conflict graph.-- The edge connects x[i] (if i > 0) or its complement (if i < 0) and-- x[j] (if j > 0) or its complement (if j < 0), where i and j are-- original ordinal numbers of corresponding variables. */static void lpx_add_cog_edge(void *_cog, int i, int j){ struct COG *cog = _cog; int k; xassert(i != j); /* determine indices of corresponding vertices */ if (i > 0) { xassert(1 <= i && i <= cog->n); i = cog->vert[i]; xassert(i != 0); } else { i = -i; xassert(1 <= i && i <= cog->n); i = cog->vert[i]; xassert(i != 0); i += cog->nb; } if (j > 0) { xassert(1 <= j && j <= cog->n); j = cog->vert[j]; xassert(j != 0); } else { j = -j; xassert(1 <= j && j <= cog->n); j = cog->vert[j]; xassert(j != 0); j += cog->nb; } /* only lower triangle is stored, so we need i > j */ if (i < j) k = i, i = j, j = k; k = ((i - 1) * (i - 2)) / 2 + (j - 1); cog->a[k / CHAR_BIT] |= (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT)); cog->ne++; return;}/*------------------------------------------------------------------------ MAXIMUM WEIGHT CLIQUE---- Two subroutines sub() and wclique() below are intended to find a-- maximum weight clique in a given undirected graph. These subroutines-- are slightly modified version of the program WCLIQUE developed by-- Patric Ostergard <http://www.tcs.hut.fi/~pat/wclique.html> and based-- on ideas from the article "P. R. J. Ostergard, A new algorithm for-- the maximum-weight clique problem, submitted for publication", which-- in turn is a generalization of the algorithm for unweighted graphs-- presented in "P. R. J. Ostergard, A fast algorithm for the maximum-- clique problem, submitted for publication".---- USED WITH PERMISSION OF THE AUTHOR OF THE ORIGINAL CODE. */struct dsa{ /* dynamic storage area */ int n; /* number of vertices */ int *wt; /* int wt[0:n-1]; */ /* weights */ unsigned char *a; /* adjacency matrix (packed lower triangle without main diag.) */ int record; /* weight of best clique */ int rec_level; /* number of vertices in best clique */ int *rec; /* int rec[0:n-1]; */ /* best clique so far */ int *clique; /* int clique[0:n-1]; */ /* table for pruning */ int *set; /* int set[0:n-1]; */ /* current clique */};#define n (dsa->n)#define wt (dsa->wt)#define a (dsa->a)#define record (dsa->record)#define rec_level (dsa->rec_level)#define rec (dsa->rec)#define clique (dsa->clique)#define set (dsa->set)#if 0static int is_edge(struct dsa *dsa, int i, int j){ /* if there is arc (i,j), the routine returns true; otherwise false; 0 <= i, j < n */ int k; xassert(0 <= i && i < n); xassert(0 <= j && j < n); if (i == j) return 0; if (i < j) k = i, i = j, j = k; k = (i * (i - 1)) / 2 + j; return a[k / CHAR_BIT] & (unsigned char)(1 << ((CHAR_BIT - 1) - k % CHAR_BIT));}#else#define is_edge(dsa, i, j) ((i) == (j) ? 0 : \ (i) > (j) ? is_edge1(i, j) : is_edge1(j, i))#define is_edge1(i, j) is_edge2(((i) * ((i) - 1)) / 2 + (j))#define is_edge2(k) (a[(k) / CHAR_BIT] & \ (unsigned char)(1 << ((CHAR_BIT - 1) - (k) % CHAR_BIT)))#endifstatic void sub(struct dsa *dsa, int ct, int table[], int level, int weight, int l_weight){ int i, j, k, curr_weight, left_weight, *p1, *p2, *newtable; newtable = xcalloc(n, sizeof(int)); if (ct <= 0) { /* 0 or 1 elements left; include these */ if (ct == 0) { set[level++] = table[0]; weight += l_weight; } if (weight > record) { record = weight; rec_level = level; for (i = 0; i < level; i++) rec[i] = set[i]; } goto done; } for (i = ct; i >= 0; i--) { if ((level == 0) && (i < ct)) goto done; k = table[i]; if ((level > 0) && (clique[k] <= (record - weight))) goto done; /* prune */ set[level] = k; curr_weight = weight + wt[k]; l_weight -= wt[k]; if (l_weight <= (record - curr_weight)) goto done; /* prune */ p1 = newtable; p2 = table; left_weight = 0; while (p2 < table + i) { j = *p2++; if (is_edge(dsa, j, k)) { *p1++ = j; left_weight += wt[j]; } } if (left_weight <= (record - curr_weight)) continue; sub(dsa, p1 - newtable - 1, newtable, level + 1, curr_weight, left_weight); }done: xfree(newtable); return;}static int wclique(int _n, int w[], unsigned char _a[], int sol[]){ struct dsa _dsa, *dsa = &_dsa; int i, j, p, max_wt, max_nwt, wth, *used, *nwt, *pos; xlong_t timer; n = _n; wt = &w[1]; a = _a; record = 0; rec_level = 0; rec = &sol[1]; clique = xcalloc(n, sizeof(int)); set = xcalloc(n, sizeof(int)); used = xcalloc(n, sizeof(int)); nwt = xcalloc(n, sizeof(int)); pos = xcalloc(n, sizeof(int)); /* start timer */ timer = xtime(); /* order vertices */ for (i = 0; i < n; i++) { nwt[i] = 0; for (j = 0; j < n; j++) if (is_edge(dsa, i, j)) nwt[i] += wt[j]; } for (i = 0; i < n; i++) used[i] = 0; for (i = n-1; i >= 0; i--) { max_wt = -1; max_nwt = -1; for (j = 0; j < n; j++) { if ((!used[j]) && ((wt[j] > max_wt) || (wt[j] == max_wt && nwt[j] > max_nwt))) { max_wt = wt[j]; max_nwt = nwt[j]; p = j; } } pos[i] = p; used[p] = 1; for (j = 0; j < n; j++) if ((!used[j]) && (j != p) && (is_edge(dsa, p, j))) nwt[j] -= wt[p]; } /* main routine */ wth = 0; for (i = 0; i < n; i++) { wth += wt[pos[i]]; sub(dsa, i, pos, 0, 0, wth); clique[pos[i]] = record;#if 0 if (utime() >= timer + 5.0)#else if (xdifftime(xtime(), timer) >= 5.0 - 0.001)#endif { /* print current record and reset timer */ xprintf("level = %d (%d); best = %d\n", i+1, n, record);#if 0 timer = utime();#else timer = xtime();#endif } } xfree(clique); xfree(set); xfree(used); xfree(nwt); xfree(pos); /* return the solution found */ for (i = 1; i <= rec_level; i++) sol[i]++; return rec_level;}#undef n#undef wt#undef a#undef record#undef rec_level#undef rec#undef clique#undef set/*------------------------------------------------------------------------ lpx_clique_cut - generate cluque cut.---- SYNOPSIS---- #include "glplpx.h"-- int lpx_clique_cut(LPX *lp, void *cog, int ind[], double val[]);---- DESCRIPTION---- The routine lpx_clique_cut generates a clique cut using the conflict-- graph specified by the parameter cog.---- If a violated clique cut has been found, it has the following form:---- sum{j in J} a[j]*x[j] <= b.---- Variable indices j in J are stored in elements ind[1], ..., ind[len]-- while corresponding constraint coefficients are stored in elements-- val[1], ..., val[len], where len is returned on exit. The right-hand-- side b is stored in element val[0].---- RETURNS---- If the cutting plane has been successfully generated, the routine-- returns 1 <= len <= n, which is the number of non-zero coefficients-- in the inequality constraint. Otherwise, the routine returns zero. */static int lpx_clique_cut(LPX *lp, void *_cog, int ind[], double val[]){ struct COG *cog = _cog; int n = lpx_get_num_cols(lp); int j, t, v, card, temp, len = 0, *w, *sol; double x, sum, b, *vec; /* allocate working arrays */ w = xcalloc(1 + 2 * cog->nb, sizeof(int)); sol = xcalloc(1 + 2 * cog->nb, sizeof(int)); vec = xcalloc(1+n, sizeof(double)); /* assign weights to vertices of the conflict graph */ for (t = 1; t <= cog->nb; t++) { j = cog->orig[t]; x = lpx_get_col_prim(lp, j); temp = (int)(100.0 * x + 0.5); if (temp < 0) temp = 0; if (temp > 100) temp = 100; w[t] = temp; w[cog->nb + t] = 100 - temp; } /* find a clique of maximum weight */ card = wclique(2 * cog->nb, w, cog->a, sol); /* compute the clique weight for unscaled values */ sum = 0.0; for ( t = 1; t <= card; t++) { v = sol[t]; xassert(1 <= v && v <= 2 * cog->nb); if (v <= cog->nb) { /* vertex v corresponds to binary variable x[j] */ j = cog->orig[v]; x = lpx_get_col_prim(lp, j); sum += x; } else { /* vertex v corresponds to the complement of x[j] */ j = cog->orig[v - cog->nb]; x = lpx_get_col_prim(lp, j); sum += 1.0 - x; } } /* if the sum of binary variables and their complements in the clique greater than 1, the clique cut is violated */ if (sum >= 1.01) { /* construct the inquality */ for (j = 1; j <= n; j++) vec[j] = 0; b = 1.0; for (t = 1; t <= card; t++) { v = sol[t]; if (v <= cog->nb) { /* vertex v corresponds to binary variable x[j] */ j = cog->orig[v]; xassert(1 <= j && j <= n); vec[j] += 1.0; } else { /* vertex v corresponds to the complement of x[j] */ j = cog->orig[v - cog->nb]; xassert(1 <= j && j <= n); vec[j] -= 1.0; b -= 1.0; } } xassert(len == 0); for (j = 1; j <= n; j++) { if (vec[j] != 0.0) { len++; ind[len] = j, val[len] = vec[j]; } } ind[0] = 0, val[0] = b; } /* free working arrays */ xfree(w); xfree(sol); xfree(vec); /* return to the calling program */ return len;}/*------------------------------------------------------------------------ lpx_delete_cog - delete the conflict graph.---- SYNOPSIS---- #include "glplpx.h"-- void lpx_delete_cog(void *cog);---- DESCRIPTION---- The routine lpx_delete_cog deletes the conflict graph, which the-- parameter cog points to, freeing all the memory allocated to this-- object. */static void lpx_delete_cog(void *_cog){ struct COG *cog = _cog; xfree(cog->vert); xfree(cog->orig); xfree(cog->a); xfree(cog);}/**********************************************************************/void *ios_clq_init(glp_tree *tree){ /* initialize clique cut generator */ glp_prob *mip = tree->mip; xassert(mip != NULL); return lpx_create_cog(mip);}/************************************************************************ NAME** ios_clq_gen - generate clique cuts** SYNOPSIS** #include "glpios.h"* void ios_clq_gen(glp_tree *tree, void *gen);** DESCRIPTION** The routine ios_clq_gen generates clique cuts for the current point* and adds them to the clique pool. */void ios_clq_gen(glp_tree *tree, void *gen){ int n = lpx_get_num_cols(tree->mip); int len, *ind; double *val; xassert(gen != NULL); ind = xcalloc(1+n, sizeof(int)); val = xcalloc(1+n, sizeof(double)); len = lpx_clique_cut(tree->mip, gen, ind, val); if (len > 0) { /* xprintf("len = %d\n", len); */ glp_ios_add_row(tree, NULL, GLP_RF_CLQ, 0, len, ind, val, GLP_UP, val[0]); } xfree(ind); xfree(val); return;}/**********************************************************************/void ios_clq_term(void *gen){ /* terminate clique cut generator */ xassert(gen != NULL); lpx_delete_cog(gen); return;}/* eof */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -