⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glpapi20.c

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 C
字号:
/* glpapi20.c (graph and network analysis routines) *//************************************************************************  This code is part of GLPK (GNU Linear Programming Kit).**  Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,*  Department for Applied Informatics, Moscow Aviation Institute,*  Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.**  GLPK is free software: you can redistribute it and/or modify it*  under the terms of the GNU General Public License as published by*  the Free Software Foundation, either version 3 of the License, or*  (at your option) any later version.**  GLPK is distributed in the hope that it will be useful, but WITHOUT*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public*  License for more details.**  You should have received a copy of the GNU General Public License*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#include "glpapi.h"/************************************************************************  NAME**  glp_weak_comp - find all weakly connected components of graph**  SYNOPSIS**  int glp_weak_comp(glp_graph *G, int v_num);**  DESCRIPTION**  The routine glp_weak_comp finds all weakly connected components of*  the specified graph.**  The parameter v_num specifies an offset of the field of type int*  in the vertex data block, to which the routine stores the number of*  a (weakly) connected component containing that vertex. If v_num < 0,*  no component numbers are stored.**  The components are numbered in arbitrary order from 1 to nc, where*  nc is the total number of components found, 0 <= nc <= |V|.**  RETURNS**  The routine returns nc, the total number of components found. */int glp_weak_comp(glp_graph *G, int v_num){     glp_vertex *v;      glp_arc *a;      int f, i, j, nc, nv, pos1, pos2, *prev, *next, *list;      /* allocate working arrays */      nv = G->nv;      prev = xcalloc(1+nv, sizeof(int));      next = xcalloc(1+nv, sizeof(int));      list = xcalloc(1+nv, sizeof(int));      /* if vertex i is unlabelled, prev[i] is the index of previous         unlabelled vertex, and next[i] is the index of next unlabelled         vertex; if vertex i is labelled, then prev[i] < 0, and next[i]         is the connected component number */      /* initially all vertices are unlabelled */      f = 1;      for (i = 1; i <= nv; i++)         prev[i] = i - 1, next[i] = i + 1;      next[nv] = 0;      /* main loop (until all vertices have been labelled) */      nc = 0;      while (f != 0)      {  /* take an unlabelled vertex */         i = f;         /* and remove it from the list of unlabelled vertices */         f = next[i];         if (f != 0) prev[f] = 0;         /* label the vertex; it begins a new component */         prev[i] = -1, next[i] = ++nc;         /* breadth first search */         list[1] = i, pos1 = pos2 = 1;         while (pos1 <= pos2)         {  /* dequeue vertex i */            i = list[pos1++];            /* consider all arcs incoming to vertex i */            for (a = G->v[i]->in; a != NULL; a = a->h_next)            {  /* vertex j is adjacent to vertex i */               j = a->tail->i;               if (prev[j] >= 0)               {  /* vertex j is unlabelled */                  /* remove it from the list of unlabelled vertices */                  if (prev[j] == 0)                     f = next[j];                  else                     next[prev[j]] = next[j];                  if (next[j] == 0)                     ;                  else                     prev[next[j]] = prev[j];                  /* label the vertex */                  prev[j] = -1, next[j] = nc;                  /* and enqueue it for further consideration */                  list[++pos2] = j;               }            }            /* consider all arcs outgoing from vertex i */            for (a = G->v[i]->out; a != NULL; a = a->t_next)            {  /* vertex j is adjacent to vertex i */               j = a->head->i;               if (prev[j] >= 0)               {  /* vertex j is unlabelled */                  /* remove it from the list of unlabelled vertices */                  if (prev[j] == 0)                     f = next[j];                  else                     next[prev[j]] = next[j];                  if (next[j] == 0)                     ;                  else                     prev[next[j]] = prev[j];                  /* label the vertex */                  prev[j] = -1, next[j] = nc;                  /* and enqueue it for further consideration */                  list[++pos2] = j;               }            }         }      }      /* store component numbers */      if (v_num >= 0)      {  for (i = 1; i <= nv; i++)         {  v = G->v[i];            memcpy((char *)v->data + v_num, &next[i], sizeof(int));         }      }      /* free working arrays */      xfree(prev);      xfree(next);      xfree(list);      return nc;}/* eof */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -