⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glplpf.h

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 H
字号:
/* glplpf.h (LP basis factorization, Schur complement version) *//************************************************************************  This code is part of GLPK (GNU Linear Programming Kit).**  Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,*  Department for Applied Informatics, Moscow Aviation Institute,*  Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.**  GLPK is free software: you can redistribute it and/or modify it*  under the terms of the GNU General Public License as published by*  the Free Software Foundation, either version 3 of the License, or*  (at your option) any later version.**  GLPK is distributed in the hope that it will be useful, but WITHOUT*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public*  License for more details.**  You should have received a copy of the GNU General Public License*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#ifndef _GLPLPF_H#define _GLPLPF_H#include "glpscf.h"#include "glpluf.h"/************************************************************************  The structure LPF defines the factorization of the basis mxm matrix*  B, where m is the number of rows in corresponding problem instance.**  This factorization is the following septet:**     [B] = (L0, U0, R, S, C, P, Q),                                 (1)**  and is based on the following main equality:**     ( B  F^)     ( B0 F )       ( L0 0 ) ( U0 R )*     (      ) = P (      ) Q = P (      ) (      ) Q,               (2)*     ( G^ H^)     ( G  H )       ( S  I ) ( 0  C )**  where:**  B is the current basis matrix (not stored);**  F^, G^, H^ are some additional matrices (not stored);**  B0 is some initial basis matrix (not stored);**  F, G, H are some additional matrices (not stored);**  P, Q are permutation matrices (stored in both row- and column-like*  formats);**  L0, U0 are some matrices that defines a factorization of the initial*  basis matrix B0 = L0 * U0 (stored in an invertable form);**  R is a matrix defined from L0 * R = F, so R = inv(L0) * F (stored in*  a column-wise sparse format);**  S is a matrix defined from S * U0 = G, so S = G * inv(U0) (stored in*  a row-wise sparse format);**  C is the Schur complement for matrix (B0 F G H). It is defined from*  S * R + C = H, so C = H - S * R = H - G * inv(U0) * inv(L0) * F =*  = H - G * inv(B0) * F. Matrix C is stored in an invertable form.**  REFERENCES**  1. M.A.Saunders, "LUSOL: A basis package for constrained optimiza-*     tion," SCCM, Stanford University, 2006.**  2. M.A.Saunders, "Notes 5: Basis Updates," CME 318, Stanford Univer-*     sity, Spring 2006.**  3. M.A.Saunders, "Notes 6: LUSOL---a Basis Factorization Package,"*     ibid. */typedef struct LPF LPF;struct LPF{     /* LP basis factorization */      int valid;      /* the factorization is valid only if this flag is set */      /*--------------------------------------------------------------*/      /* initial basis matrix B0 */      int m0_max;      /* maximal value of m0 (increased automatically, if necessary) */      int m0;      /* the order of B0 */      LUF *luf;      /* LU-factorization of B0 */      /*--------------------------------------------------------------*/      /* current basis matrix B */      int m;      /* the order of B */      double *B; /* double B[1+m*m]; */      /* B in dense format stored by rows and used only for debugging;         normally this array is not allocated */      /*--------------------------------------------------------------*/      /* augmented matrix (B0 F G H) of the order m0+n */      int n_max;      /* maximal number of additional rows and columns */      int n;      /* current number of additional rows and columns */      /*--------------------------------------------------------------*/      /* m0xn matrix R in column-wise format */      int *R_ptr; /* int R_ptr[1+n_max]; */      /* R_ptr[j], 1 <= j <= n, is a pointer to j-th column */      int *R_len; /* int R_len[1+n_max]; */      /* R_len[j], 1 <= j <= n, is the length of j-th column */      /*--------------------------------------------------------------*/      /* nxm0 matrix S in row-wise format */      int *S_ptr; /* int S_ptr[1+n_max]; */      /* S_ptr[i], 1 <= i <= n, is a pointer to i-th row */      int *S_len; /* int S_len[1+n_max]; */      /* S_len[i], 1 <= i <= n, is the length of i-th row */      /*--------------------------------------------------------------*/      /* Schur complement C of the order n */      SCF *scf; /* SCF scf[1:n_max]; */      /* factorization of the Schur complement */      /*--------------------------------------------------------------*/      /* matrix P of the order m0+n */      int *P_row; /* int P_row[1+m0_max+n_max]; */      /* P_row[i] = j means that P[i,j] = 1 */      int *P_col; /* int P_col[1+m0_max+n_max]; */      /* P_col[j] = i means that P[i,j] = 1 */      /*--------------------------------------------------------------*/      /* matrix Q of the order m0+n */      int *Q_row; /* int Q_row[1+m0_max+n_max]; */      /* Q_row[i] = j means that Q[i,j] = 1 */      int *Q_col; /* int Q_col[1+m0_max+n_max]; */      /* Q_col[j] = i means that Q[i,j] = 1 */      /*--------------------------------------------------------------*/      /* Sparse Vector Area (SVA) is a set of locations intended to         store sparse vectors which represent columns of matrix R and         rows of matrix S; each location is a doublet (ind, val), where         ind is an index, val is a numerical value of a sparse vector         element; in the whole each sparse vector is a set of adjacent         locations defined by a pointer to its first element and its         length, i.e. the number of its elements */      int v_size;      /* the SVA size, in locations; locations are numbered by integers         1, 2, ..., v_size, and location 0 is not used */      int v_ptr;      /* pointer to the first available location */      int *v_ind; /* int v_ind[1+v_size]; */      /* v_ind[k], 1 <= k <= v_size, is the index field of location k */      double *v_val; /* double v_val[1+v_size]; */      /* v_val[k], 1 <= k <= v_size, is the value field of location k */      /*--------------------------------------------------------------*/      double *work1; /* double work1[1+m0+n_max]; */      /* working array */      double *work2; /* double work2[1+m0+n_max]; */      /* working array */};/* return codes: */#define LPF_ESING    1  /* singular matrix */#define LPF_ECOND    2  /* ill-conditioned matrix */#define LPF_ELIMIT   3  /* update limit reached */#define lpf_create_it _glp_lpf_create_itLPF *lpf_create_it(void);/* create LP basis factorization */#define lpf_factorize _glp_lpf_factorizeint lpf_factorize(LPF *lpf, int m, const int bh[], int (*col)      (void *info, int j, int ind[], double val[]), void *info);/* compute LP basis factorization */#define lpf_ftran _glp_lpf_ftranvoid lpf_ftran(LPF *lpf, double x[]);/* perform forward transformation (solve system B*x = b) */#define lpf_btran _glp_lpf_btranvoid lpf_btran(LPF *lpf, double x[]);/* perform backward transformation (solve system B'*x = b) */#define lpf_update_it _glp_lpf_update_itint lpf_update_it(LPF *lpf, int j, int bh, int len, const int ind[],      const double val[]);/* update LP basis factorization */#define lpf_delete_it _glp_lpf_delete_itvoid lpf_delete_it(LPF *lpf);/* delete LP basis factorization */#endif/* eof */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -