⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glpscg.h

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 H
字号:
/* glpscg.h (sparse cliqued graph) *//************************************************************************  This code is part of GLPK (GNU Linear Programming Kit).**  Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,*  Department for Applied Informatics, Moscow Aviation Institute,*  Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.**  GLPK is free software: you can redistribute it and/or modify it*  under the terms of the GNU General Public License as published by*  the Free Software Foundation, either version 3 of the License, or*  (at your option) any later version.**  GLPK is distributed in the hope that it will be useful, but WITHOUT*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public*  License for more details.**  You should have received a copy of the GNU General Public License*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#ifndef _GLPSCG_H#define _GLPSCG_H#include "glpdmp.h"typedef struct SCG SCG;typedef struct SCGRIB SCGRIB;typedef struct SCGCQE SCGCQE;struct SCG{     /* sparse undirected loopless cliqued graph */      DMP *pool;      /* memory pool to store graph components */      int n_max;      /* maximal number of nodes (enlarged automatically) */      int nc_max;      /* maximal number of cliques (enlarged automatically) */      int n;      /* number of nodes, n >= 0 */      int nc;      /* number of cliques, nc >= 0 */      SCGRIB **i_ptr; /* SCGRIB *i_ptr[1+n_max]; */      /* i_ptr[i], 1 <= i <= n, is a pointer to the list of edges,         where node i is the first endpoint of the edge */      SCGRIB **j_ptr; /* SCGRIB *j_ptr[1+n_max]; */      /* j_ptr[j], 1 <= j <= n, is a pointer to the list of edges,         where node j is the second endpoint of the edge */      SCGCQE **c_ptr; /* SCGCQE *c_ptr[1+nc_max]; */      /* c_ptr[c], 1 <= c <= nc, is a pointer to the list of clique         elements for nodes, which belong to clique c */      SCGCQE **v_ptr; /* SCGCQE *v_ptr[1+n_max]; */      /* v_ptr[i], 1 <= i <= n, is a pointer to the list of clique         elements for cliques, which contain node i */      char *flag; /* char flag[1+n]; */      /* working array (must contain binary zeros) */};struct SCGRIB{     /* edge (i,j), where 1 <= i < j <= n */      int i;      /* node i is the first endpoint of this edge */      int j;      /* node j is the second endpoint of this edge */      SCGRIB *i_prev;      /* pointer to previous edge having the same first endpoint */      SCGRIB *i_next;      /* pointer to next edge having the same first endpoint */      SCGRIB *j_prev;      /* pointer to previous edge having the same second endpoint */      SCGRIB *j_next;      /* pointer to next edge having the same second endpoint */};struct SCGCQE{     /* clique element */      int c;      /* clique number (1 <= c <= nc) */      int i;      /* node number (1 <= i <= n) */      SCGCQE *c_next;      /* pointer to next clique element for the same clique */      SCGCQE *v_next;      /* pointer to next clique element for the same node */};#define scg_create_graph _glp_scg_create_graphSCG *scg_create_graph(int n);/* create cliqued graph */#define scg_add_nodes _glp_scg_add_nodesint scg_add_nodes(SCG *g, int num);/* add new nodes to cliqued graph */#define scg_add_edge _glp_scg_add_edgeSCGRIB *scg_add_edge(SCG *g, int i, int j);/* add new edge (i,j) to cliqued graph */#define scg_adj_list _glp_scg_adj_listint scg_adj_list(SCG *g, int i, int adj[]);/* get adjacency list for a node of cliqued graph */#define scg_max_clique _glp_scg_max_cliqueint scg_max_clique(SCG *g, const int w[], int list[]);/* find maximum weight clique in given graph */#define scg_delete_graph _glp_scg_delete_graphvoid scg_delete_graph(SCG *g);/* delete cliqued graph */#endif/* eof */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -