⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glpfhv.h

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 H
字号:
/* glpfhv.h (LP basis factorization, FHV eta file version) *//************************************************************************  This code is part of GLPK (GNU Linear Programming Kit).**  Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,*  Department for Applied Informatics, Moscow Aviation Institute,*  Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.**  GLPK is free software: you can redistribute it and/or modify it*  under the terms of the GNU General Public License as published by*  the Free Software Foundation, either version 3 of the License, or*  (at your option) any later version.**  GLPK is distributed in the hope that it will be useful, but WITHOUT*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public*  License for more details.**  You should have received a copy of the GNU General Public License*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#ifndef _GLPFHV_H#define _GLPFHV_H#include "glpluf.h"/************************************************************************  The structure FHV defines the factorization of the basis mxm-matrix*  B, where m is the number of rows in corresponding problem instance.**  This factorization is the following sextet:**     [B] = (F, H, V, P0, P, Q),                                     (1)**  where F, H, and V are such matrices that**     B = F * H * V,                                                 (2)**  and P0, P, and Q are such permutation matrices that the matrix**     L = P0 * F * inv(P0)                                           (3)**  is lower triangular with unity diagonal, and the matrix**     U = P * V * Q                                                  (4)**  is upper triangular. All the matrices have the same order m, which*  is the order of the basis matrix B.**  The matrices F, V, P, and Q are stored in the structure LUF (see the*  module GLPLUF), which is a member of the structure FHV.**  The matrix H is stored in the form of eta file using row-like format*  as follows:**     H = H[1] * H[2] * ... * H[nfs],                                (5)**  where H[k], k = 1, 2, ..., nfs, is a row-like factor, which differs*  from the unity matrix only by one row, nfs is current number of row-*  like factors. After the factorization has been built for some given*  basis matrix B the matrix H has no factors and thus it is the unity*  matrix. Then each time when the factorization is recomputed for an*  adjacent basis matrix, the next factor H[k], k = 1, 2, ... is built*  and added to the end of the eta file H.**  Being sparse vectors non-trivial rows of the factors H[k] are stored*  in the right part of the sparse vector area (SVA) in the same manner*  as rows and columns of the matrix F.**  For more details see the program documentation. */typedef struct FHV FHV;struct FHV{     /* LP basis factorization */      int m_max;      /* maximal value of m (increased automatically, if necessary) */      int m;      /* the order of matrices B, F, H, V, P0, P, Q */      int valid;      /* the factorization is valid only if this flag is set */      LUF *luf;      /* LU-factorization (contains the matrices F, V, P, Q) */      /*--------------------------------------------------------------*/      /* matrix H in the form of eta file */      int hh_max;      /* maximal number of row-like factors (which limits the number of         updates of the factorization) */      int hh_nfs;      /* current number of row-like factors (0 <= hh_nfs <= hh_max) */      int *hh_ind; /* int hh_ind[1+hh_max]; */      /* hh_ind[k], k = 1, ..., nfs, is the number of a non-trivial row         of factor H[k] */      int *hh_ptr; /* int hh_ptr[1+hh_max]; */      /* hh_ptr[k], k = 1, ..., nfs, is a pointer to the first element         of the non-trivial row of factor H[k] in the SVA */      int *hh_len; /* int hh_len[1+hh_max]; */      /* hh_len[k], k = 1, ..., nfs, is the number of non-zero elements         in the non-trivial row of factor H[k] */      /*--------------------------------------------------------------*/      /* matrix P0 */      int *p0_row; /* int p0_row[1+m_max]; */      /* p0_row[i] = j means that p0[i,j] = 1 */      int *p0_col; /* int p0_col[1+m_max]; */      /* p0_col[j] = i means that p0[i,j] = 1 */      /* if i-th row or column of the matrix F corresponds to i'-th row         or column of the matrix L = P0*F*inv(P0), then p0_row[i'] = i         and p0_col[i] = i' */      /*--------------------------------------------------------------*/      /* working arrays */      int *cc_ind; /* int cc_ind[1+m_max]; */      /* integer working array */      double *cc_val; /* double cc_val[1+m_max]; */      /* floating-point working array */      /*--------------------------------------------------------------*/      /* control parameters */      double upd_tol;      /* update tolerance; if after updating the factorization absolute         value of some diagonal element u[k,k] of matrix U = P*V*Q is         less than upd_tol * max(|u[k,*]|, |u[*,k]|), the factorization         is considered as inaccurate */      /*--------------------------------------------------------------*/      /* some statistics */      int nnz_h;      /* current number of non-zeros in all factors of matrix H */};/* return codes: */#define FHV_ESING    1  /* singular matrix */#define FHV_ECOND    2  /* ill-conditioned matrix */#define FHV_ECHECK   3  /* insufficient accuracy */#define FHV_ELIMIT   4  /* update limit reached */#define FHV_EROOM    5  /* SVA overflow */#define fhv_create_it _glp_fhv_create_itFHV *fhv_create_it(void);/* create LP basis factorization */#define fhv_factorize _glp_fhv_factorizeint fhv_factorize(FHV *fhv, int m, int (*col)(void *info, int j,      int ind[], double val[]), void *info);/* compute LP basis factorization */#define fhv_h_solve _glp_fhv_h_solvevoid fhv_h_solve(FHV *fhv, int tr, double x[]);/* solve system H*x = b or H'*x = b */#define fhv_ftran _glp_fhv_ftranvoid fhv_ftran(FHV *fhv, double x[]);/* perform forward transformation (solve system B*x = b) */#define fhv_btran _glp_fhv_btranvoid fhv_btran(FHV *fhv, double x[]);/* perform backward transformation (solve system B'*x = b) */#define fhv_update_it _glp_fhv_update_itint fhv_update_it(FHV *fhv, int j, int len, const int ind[],      const double val[]);/* update LP basis factorization */#define fhv_delete_it _glp_fhv_delete_itvoid fhv_delete_it(FHV *fhv);/* delete LP basis factorization */#endif/* eof */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -