📄 glpfhv.h
字号:
/* glpfhv.h (LP basis factorization, FHV eta file version) *//************************************************************************ This code is part of GLPK (GNU Linear Programming Kit).** Copyright (C) 2000,01,02,03,04,05,06,07,08,2009 Andrew Makhorin,* Department for Applied Informatics, Moscow Aviation Institute,* Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.** GLPK is free software: you can redistribute it and/or modify it* under the terms of the GNU General Public License as published by* the Free Software Foundation, either version 3 of the License, or* (at your option) any later version.** GLPK is distributed in the hope that it will be useful, but WITHOUT* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public* License for more details.** You should have received a copy of the GNU General Public License* along with GLPK. If not, see <http://www.gnu.org/licenses/>.***********************************************************************/#ifndef _GLPFHV_H#define _GLPFHV_H#include "glpluf.h"/************************************************************************ The structure FHV defines the factorization of the basis mxm-matrix* B, where m is the number of rows in corresponding problem instance.** This factorization is the following sextet:** [B] = (F, H, V, P0, P, Q), (1)** where F, H, and V are such matrices that** B = F * H * V, (2)** and P0, P, and Q are such permutation matrices that the matrix** L = P0 * F * inv(P0) (3)** is lower triangular with unity diagonal, and the matrix** U = P * V * Q (4)** is upper triangular. All the matrices have the same order m, which* is the order of the basis matrix B.** The matrices F, V, P, and Q are stored in the structure LUF (see the* module GLPLUF), which is a member of the structure FHV.** The matrix H is stored in the form of eta file using row-like format* as follows:** H = H[1] * H[2] * ... * H[nfs], (5)** where H[k], k = 1, 2, ..., nfs, is a row-like factor, which differs* from the unity matrix only by one row, nfs is current number of row-* like factors. After the factorization has been built for some given* basis matrix B the matrix H has no factors and thus it is the unity* matrix. Then each time when the factorization is recomputed for an* adjacent basis matrix, the next factor H[k], k = 1, 2, ... is built* and added to the end of the eta file H.** Being sparse vectors non-trivial rows of the factors H[k] are stored* in the right part of the sparse vector area (SVA) in the same manner* as rows and columns of the matrix F.** For more details see the program documentation. */typedef struct FHV FHV;struct FHV{ /* LP basis factorization */ int m_max; /* maximal value of m (increased automatically, if necessary) */ int m; /* the order of matrices B, F, H, V, P0, P, Q */ int valid; /* the factorization is valid only if this flag is set */ LUF *luf; /* LU-factorization (contains the matrices F, V, P, Q) */ /*--------------------------------------------------------------*/ /* matrix H in the form of eta file */ int hh_max; /* maximal number of row-like factors (which limits the number of updates of the factorization) */ int hh_nfs; /* current number of row-like factors (0 <= hh_nfs <= hh_max) */ int *hh_ind; /* int hh_ind[1+hh_max]; */ /* hh_ind[k], k = 1, ..., nfs, is the number of a non-trivial row of factor H[k] */ int *hh_ptr; /* int hh_ptr[1+hh_max]; */ /* hh_ptr[k], k = 1, ..., nfs, is a pointer to the first element of the non-trivial row of factor H[k] in the SVA */ int *hh_len; /* int hh_len[1+hh_max]; */ /* hh_len[k], k = 1, ..., nfs, is the number of non-zero elements in the non-trivial row of factor H[k] */ /*--------------------------------------------------------------*/ /* matrix P0 */ int *p0_row; /* int p0_row[1+m_max]; */ /* p0_row[i] = j means that p0[i,j] = 1 */ int *p0_col; /* int p0_col[1+m_max]; */ /* p0_col[j] = i means that p0[i,j] = 1 */ /* if i-th row or column of the matrix F corresponds to i'-th row or column of the matrix L = P0*F*inv(P0), then p0_row[i'] = i and p0_col[i] = i' */ /*--------------------------------------------------------------*/ /* working arrays */ int *cc_ind; /* int cc_ind[1+m_max]; */ /* integer working array */ double *cc_val; /* double cc_val[1+m_max]; */ /* floating-point working array */ /*--------------------------------------------------------------*/ /* control parameters */ double upd_tol; /* update tolerance; if after updating the factorization absolute value of some diagonal element u[k,k] of matrix U = P*V*Q is less than upd_tol * max(|u[k,*]|, |u[*,k]|), the factorization is considered as inaccurate */ /*--------------------------------------------------------------*/ /* some statistics */ int nnz_h; /* current number of non-zeros in all factors of matrix H */};/* return codes: */#define FHV_ESING 1 /* singular matrix */#define FHV_ECOND 2 /* ill-conditioned matrix */#define FHV_ECHECK 3 /* insufficient accuracy */#define FHV_ELIMIT 4 /* update limit reached */#define FHV_EROOM 5 /* SVA overflow */#define fhv_create_it _glp_fhv_create_itFHV *fhv_create_it(void);/* create LP basis factorization */#define fhv_factorize _glp_fhv_factorizeint fhv_factorize(FHV *fhv, int m, int (*col)(void *info, int j, int ind[], double val[]), void *info);/* compute LP basis factorization */#define fhv_h_solve _glp_fhv_h_solvevoid fhv_h_solve(FHV *fhv, int tr, double x[]);/* solve system H*x = b or H'*x = b */#define fhv_ftran _glp_fhv_ftranvoid fhv_ftran(FHV *fhv, double x[]);/* perform forward transformation (solve system B*x = b) */#define fhv_btran _glp_fhv_btranvoid fhv_btran(FHV *fhv, double x[]);/* perform backward transformation (solve system B'*x = b) */#define fhv_update_it _glp_fhv_update_itint fhv_update_it(FHV *fhv, int j, int len, const int ind[], const double val[]);/* update LP basis factorization */#define fhv_delete_it _glp_fhv_delete_itvoid fhv_delete_it(FHV *fhv);/* delete LP basis factorization */#endif/* eof */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -