📄 dea.mod
字号:
/* Data Envelopment Analysis (DEA) * * DEA quantifies the relative efficiency of decision making units (DMUs) by * finding the efficient frontier in multiple input multiple output data. The * inputs are resources (eg. number of employees, available machines, ...), * the outputs are productive outputs (eg. contracts made, total sales, ...). * The method is non-parametric. More details are available in the paper * below. * * Models according to: Seiford, Threall, "Recent developments in DEA", 1990. * * Implementation: Sebastian Nowozin <nowozin@gmail.com> */### SETS ###set dmus; # Decision Making Units (DMU)set inputs; # Input parametersset outputs; # Output parameters### PARAMETERS ###param input_data{dmus,inputs} >= 0;param output_data{dmus,outputs} >= 0;### PROGRAM ###var theta{dmus} >= 0;var lambda{dmus,dmus} >= 0;minimize inefficiency: sum{td in dmus} theta[td];s.t. output_lower_limit{o in outputs, td in dmus}: sum{d in dmus} lambda[d,td]*output_data[d,o] >= output_data[td,o];s.t. input_upper_limit{i in inputs, td in dmus}: sum{d in dmus} lambda[d,td]*input_data[d,i] <= theta[td]*input_data[td,i]; s.t. PI1{td in dmus}: sum{d in dmus} lambda[d,td] = 1;/*possibilities: i) (no constraint) ii) s.t. PI1{td in dmus}: sum{d in dmus} lambda[d,td] <= 1; iii) s.t. PI1{td in dmus}: sum{d in dmus} lambda[d,td] >= 1;*/### SOLVE AND PRINT SOLUTION ###solve;printf "DMU\tEfficiency\n";for {td in dmus} { printf "%s\t%1.4f\n", td, theta[td];}### DATA ###data;set dmus := 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ;set inputs := AvgInventory LaborCost OperatingCost Population ;set outputs := PrescrVol kDollarValue ;param input_data default 0.0 : AvgInventory LaborCost OperatingCost Population :=1 8000 17030 1280 14102 9000 25890 2779 15233 13694 29076 2372 13544 4250 17506 1385 8225 6500 23208 639 7466 7000 12946 802 12817 4500 18001 1130 10168 5000 14473 1097 10709 27000 31760 5559 169410 21560 50972 15010 191011 15000 39523 4799 174512 8500 13076 3489 135313 35000 35427 1704 50014 18000 27554 2882 101615 59750 53848 14208 250016 19200 38253 1480 229317 40000 109404 83016 271818 8466 18198 1278 287719 16000 40891 7599 415020 10000 45444 5556 442121 25000 35623 2121 388322 14000 20192 5515 351923 12500 34973 10475 3236624 17260 32284 14498 339325 7000 17920 7585 448926 14000 42094 3742 221727 16400 35422 14236 464128 13000 19100 3529 596829 30000 72167 8656 871530 12530 19970 1714 596831 31500 39183 4919 560732 10000 32048 3483 732433 22000 68877 12279 868534 10000 29812 3332 868535 16000 47686 2507 542036 10000 33415 4738 770337 9000 12359 4603 466538 16439 23614 2989 631739 14500 36069 1793 3183940 39000 76307 9539 1561941 24927 40706 12661 3021342 13858 39267 4609 3471943 33375 29509 11323 3183944 29044 44482 5542 3471945 32257 61365 20550 3236646 8800 49671 3306 4356147 47000 40425 10396 3126348 12000 33034 4915 3126349 28000 69163 4688 1517350 13300 28931 16735 7306451 13500 29758 4260 6230952 24000 40927 8285 2316653 16000 40403 2131 9983654 17000 38730 2539 6034855 25000 35978 2502 9983656 16000 37509 6278 9983657 20000 46950 10715 8592558 14000 35966 3144 8592559 22000 68318 8015 10898760 21879 69537 7778 10898761 15000 25425 2812 20140462 10000 19508 2454 20140463 20000 28191 3367 20140464 18000 37073 8624 10898765 19051 23763 3496 20140466 15000 28642 3366 20140467 10000 35919 3868 20140468 24000 54653 26494 10898769 1800 6276 3413 60348 ;param output_data default 0.0 : PrescrVol kDollarValue :=1 12293 61.002 18400 92.003 16789 92.654 10700 45.005 9800 50.006 6500 29.007 8200 56.008 8680 45.009 33800 183.0010 23710 156.0011 24000 120.0012 17500 75.0013 25000 130.0014 26000 122.0015 26830 178.51316 16600 106.0017 90000 450.0018 11140 73.62419 25868 136.0020 32700 191.29521 29117 152.86422 18000 100.0023 11100 60.0024 23030 137.77825 10656 58.0026 24682 152.09527 26908 120.0028 16464 80.0029 57000 321.0030 17532 94.74731 30035 168.0032 16000 100.0033 63700 277.0034 18000 90.0035 27339 139.13436 19500 116.0037 13000 80.0038 15370 102.0039 18446 90.0040 56000 260.0041 73845 364.95142 28600 145.0043 27000 243.0044 52423 279.81645 73759 363.38846 20500 80.0047 27100 115.0048 15000 110.0049 50895 277.85250 19707 128.0051 17994 78.8052 36135 167.22253 30000 153.0054 26195 125.0055 28000 216.0056 24658 152.55157 36850 190.0058 29250 183.6959 50000 250.0060 40078 265.44361 20200 110.0062 12500 75.0063 30890 195.0064 31000 175.0065 31277 192.99266 11500 75.0067 30000 175.66868 38383 190.0069 2075 8.650 ;end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -