📄 transp_odbc.mod
字号:
# A TRANSPORTATION PROBLEM## This problem finds a least cost shipping schedule that meets# requirements at markets and supplies at factories.## References:# Dantzig G B, "Linear Programming and Extensions."# Princeton University Press, Princeton, New Jersey, 1963,# Chapter 3-3.set I;/* canning plants */param a{i in I};/* capacity of plant i in cases */table plants IN "iODBC" 'DSN=glpk;UID=glpk;PWD=gnu' 'SELECT PLANT, CAPA AS CAPACITY FROM transp_capa' : I <- [ PLANT ], a ~ CAPACITY;set J;/* markets */param b{j in J};/* demand at market j in cases */table markets IN "iODBC" 'DSN=glpk;UID=glpk;PWD=gnu' 'transp_demand' : J <- [ MARKET ], b ~ DEMAND;param d{i in I, j in J};/* distance in thousands of miles */table dist IN "iODBC" 'DSN=glpk;UID=glpk;PWD=gnu' 'transp_dist' : [ LOC1, LOC2 ], d ~ DIST;param f;/* freight in dollars per case per thousand miles */param c{i in I, j in J} := f * d[i,j] / 1000;/* transport cost in thousands of dollars per case */var x{i in I, j in J} >= 0;/* shipment quantities in cases */minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];/* total transportation costs in thousands of dollars */s.t. supply{i in I}: sum{j in J} x[i,j] <= a[i];/* observe supply limit at plant i */s.t. demand{j in J}: sum{i in I} x[i,j] >= b[j];/* satisfy demand at market j */solve;table result{i in I, j in J: x[i,j]} OUT "iODBC" 'DSN=glpk;UID=glpk;PWD=gnu' 'DELETE FROM transp_result'# 'transp_result' 'INSERT INTO transp_result VALUES (?,?,?)' : i ~ LOC1, j ~ LOC2, x[i,j] ~ QUANTITY;data;param f := 90;end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -