⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 transp_odbc.mod

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 MOD
字号:
# A TRANSPORTATION PROBLEM## This problem finds a least cost shipping schedule that meets# requirements at markets and supplies at factories.##  References:#              Dantzig G B, "Linear Programming and Extensions."#              Princeton University Press, Princeton, New Jersey, 1963,#              Chapter 3-3.set I;/* canning plants */param a{i in I};/* capacity of plant i in cases */table plants IN "iODBC"   'DSN=glpk;UID=glpk;PWD=gnu'   'SELECT PLANT, CAPA AS CAPACITY FROM transp_capa' :    I <- [ PLANT ], a ~ CAPACITY;set J;/* markets */param b{j in J};/* demand at market j in cases */table markets IN "iODBC"   'DSN=glpk;UID=glpk;PWD=gnu'   'transp_demand' :   J <- [ MARKET ], b ~ DEMAND;param d{i in I, j in J};/* distance in thousands of miles */table dist IN "iODBC"   'DSN=glpk;UID=glpk;PWD=gnu'   'transp_dist' :   [ LOC1, LOC2 ], d ~ DIST;param f;/* freight in dollars per case per thousand miles */param c{i in I, j in J} := f * d[i,j] / 1000;/* transport cost in thousands of dollars per case */var x{i in I, j in J} >= 0;/* shipment quantities in cases */minimize cost: sum{i in I, j in J} c[i,j] * x[i,j];/* total transportation costs in thousands of dollars */s.t. supply{i in I}: sum{j in J} x[i,j] <= a[i];/* observe supply limit at plant i */s.t. demand{j in J}: sum{i in I} x[i,j] >= b[j];/* satisfy demand at market j */solve;table result{i in I, j in J: x[i,j]} OUT "iODBC"   'DSN=glpk;UID=glpk;PWD=gnu'   'DELETE FROM transp_result'# 'transp_result'    'INSERT INTO transp_result VALUES (?,?,?)' :  i ~ LOC1, j ~ LOC2, x[i,j] ~ QUANTITY;data;param f := 90;end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -