⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fctp.mod

📁 著名的大规模线性规划求解器源码GLPK.C语言版本,可以修剪.内有详细帮助文档.
💻 MOD
字号:
/* FCTP, Fixed-Charge Transportation Problem *//* Written in GNU MathProg by Andrew Makhorin <mao@mai2.rcnet.ru> *//* The Fixed-Charge Transportation Problem (FCTP) is obtained from   classical transportation problem by imposing a fixed cost on each   transportation link if there is a positive flow on that link. */param m, integer, > 0;/* number of sources */param n, integer, > 0;/* number of customers */set I := 1..m;/* set of sources */set J := 1..n;/* set of customers */param supply{i in I}, >= 0;/* supply at source i */param demand{j in J}, >= 0;/* demand at customer j */param varcost{i in I, j in J}, >= 0;/* variable cost (a cost per one unit shipped from i to j) */param fixcost{i in I, j in J}, >= 0;/* fixed cost (a cost for shipping any amount from i to j) */var x{i in I, j in J}, >= 0;/* amount shipped from source i to customer j */s.t. f{i in I}: sum{j in J} x[i,j] = supply[i];/* observe supply at source i */s.t. g{j in J}: sum{i in I} x[i,j] = demand[j];/* satisfy demand at customer j */var y{i in I, j in J}, binary;/* y[i,j] = 1 means some amount is shipped from i to j */s.t. h{i in I, j in J}: x[i,j] <= min(supply[i], demand[j]) * y[i,j];/* if y[i,j] is 0, force x[i,j] to be 0 (may note that supply[i] and   demand[j] are implicit upper bounds for x[i,j] as follows from the   constraints f[i] and g[j]) */minimize cost: sum{i in I, j in J} varcost[i,j] * x[i,j] +               sum{i in I, j in J} fixcost[i,j] * y[i,j];/* total transportation costs */data;/* These data correspond to the instance bal8x12 from [Balinski]. *//* The optimal solution is 471.55 */param m := 8;param n := 12;param supply := 1 15.00,  2 20.00,  3 45.00,  4 35.00,                5 25.00,  6 35.00,  7 10.00,  8 25.00;param demand := 1 20.00,  2 15.00,  3 20.00,  4 15.00,                5  5.00,  6 20.00,  7 30.00,  8 10.00,                9 35.00, 10 25.00, 11 10.00, 12  5.00;param varcost      :   1    2    3    4    5    6    7    8    9    10   11   12  :=      1  0.69 0.64 0.71 0.79 1.70 2.83 2.02 5.64 5.94 5.94 5.94 7.68      2  1.01 0.75 0.88 0.59 1.50 2.63 2.26 5.64 5.85 5.62 5.85 4.94      3  1.05 1.06 1.08 0.64 1.22 2.37 1.66 5.64 5.91 5.62 5.91 4.94      4  1.94 1.50 1.56 1.22 1.98 1.98 1.36 6.99 6.99 6.99 6.99 3.68      5  1.61 1.40 1.61 1.33 1.68 2.83 1.54 4.26 4.26 4.26 4.26 2.99      6  5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.31 0.21 0.17 0.31 1.53      7  5.29 5.94 6.08 5.29 5.96 6.77 5.08 0.55 0.35 0.40 0.19 1.53      8  5.29 6.08 6.08 5.29 5.96 6.45 5.08 2.43 2.30 2.33 1.81 2.50 ;param fixcost      :   1    2    3    4    5    6    7    8    9    10   11   12  :=      1  11.0 16.0 18.0 17.0 10.0 20.0 17.0 13.0 15.0 12.0 14.0 14.0      2  14.0 17.0 17.0 13.0 15.0 13.0 16.0 11.0 20.0 11.0 15.0 10.0      3  12.0 13.0 20.0 17.0 13.0 15.0 16.0 13.0 12.0 13.0 10.0 18.0      4  16.0 19.0 16.0 11.0 15.0 12.0 18.0 12.0 18.0 13.0 13.0 14.0      5  19.0 18.0 15.0 16.0 12.0 14.0 20.0 19.0 11.0 17.0 16.0 18.0      6  13.0 20.0 20.0 17.0 15.0 12.0 14.0 11.0 12.0 19.0 15.0 16.0      7  11.0 12.0 15.0 10.0 17.0 11.0 11.0 16.0 10.0 18.0 17.0 12.0      8  17.0 10.0 20.0 12.0 17.0 20.0 16.0 15.0 10.0 12.0 16.0 18.0 ;end;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -